
���������	
���������	
���������	
���������	

����� ����
��������� ����
��������� ����
��������� ����
����

��������	
� ���������	
� ���������	
� ���������	
� �����

���������	���
���������
������������������
���������������

������
�����������������������������������

���������������������

Copyrighted
Material

Copyrighted

Material

Copyrighted
Material

Copyrighted

Material
� � � ���

Material Properties

• Basic Material Properties

• User Forms

• Arrays

• Working with Assemblies

• Selection Manager

• Verification and Error Handling

Copyrighted
Material

Copyrighted

Material

Copyrighted
Material

Copyrighted

Material

������������'������ � �

��� �

Introduction

This exercise is designed to go through the process of changing
document properties such as density. It will also review several
standard VB programming methods. This exercise could easily be
extended to copying document properties to other SolidWorks
files. It will also examine a method for parsing through an
assembly tree to change some or all of the parts in the assembly.

Part 1: Basic Material Properties
The initial goal will be to make a tool that allows the user to select
a material from a pull-down list or combo box. When he clicks an
OK button, the macro should apply the appropriate density to the
active part. The user should be able to cancel the operation
without applying a material density.

Macro Limitations
One of the limitations of recorded macros in SolidWorks is that
some dialog box actions are not recorded. At the time of
publication, material option settings were not recorded. To
automate selections in dialogs you will need to find the appropriate
method or property from the API help. This can take some
searching, so I will point out several throughout the example.

Initial Code
1. Create a new macro by selecting Tools, Macro, New or

clicking .

2. Save it as materials.swp.

3. Declare swApp and Part publicly so they can be used in
other modules and add the code to capture the active
document.

Option Explicit
Public swApp As SldWorks.SldWorks
Public Part As SldWorks.ModelDoc2

Copyrighted
Material

Copyrighted

Material

Copyrighted
Material

Copyrighted

Material

� � ������������'������

� � ���

Sub main()

Set swApp = Application.SldWorks
Set Part = swApp.ActiveDoc
End Sub

User Forms
Through the first exercises, two different methods for gathering
user input have been introduced. One method was the input box.
That is fine for simple text input. The other method was Excel.
This improved things by adding command buttons and multiple
input values. Many times it is better to be able to organize user
input in a dialog box or form. This is a standard with practically
any Windows software. These allow users to input text, click
buttons to activate procedures, and select options. After this
example you will have created a form that looks like the one
shown using a pull-down list or ComboBox and two command
buttons.

4. Add a user form to your macro by clicking or select
Insert, UserForm.

A new user form window will show on the screen along with
the same Controls Toolbox we saw in Excel. We need to add
a ComboBox control and two CommandButton controls to
our form.

5. Drag and drop each control from the Control Toolbox onto
your form.

After adding the controls your form should look something like the
following. The controls can be moved around and resized for

Copyrighted
Material

Copyrighted

Material

Copyrighted
Material

Copyrighted

Material

������������'������ � �

��� �

visibility as desired. A good form is one that is compact enough to
not be intrusive while still being easy to read and use.

Object Properties
Each of these controls has a list of properties that you can change.
It would be impractical to have to remember that
CommandButton1 is for OK and that CommandButton2 is for
Close. So you can change their caption property to be OK and
Close respectively.

6. Select CommandButton1. The Property list will show all
of the object’s properties. This is the same idea as the
SolidWorks Property Manager.

7. Change the text next to Caption to OK and change the
Name to cmdOK. Change the Default property to True.

Copyrighted
Material

Copyrighted

Material

Copyrighted
Material

Copyrighted

Material

� � ������������'������

� � ���

The Default property will make the OK button the default of the
available command buttons. If the user selects a material from the
list and hits the enter key, it will be the same as clicking the button.

8. Select CommandButton2 and change its Caption to Close
and its Name to cmdClose.

9. Select the form itself and change its Name to
frmMaterials, its Caption to Materials and ShowModal
to False.

Setting the ShowModal property to False allows the SolidWorks
user to interact with SolidWorks while the dialog box displays.
This can be helpful if the user forgot to select some parts before
running the macro.

10. Select the ComboBox and set its Name to cboMaterials,
its ColumnCount property to 2 and its ColumnWidths
property to 80 pt.

The ColumnCount property will allow us to see both the material
name and its density in the same combo box. The ColumnWidths
property sets the width of each column in our combo box control.

Populating and Showing the Form
The macro needs a line of code that will display the form at the
right time. If you run the macro right now, it will only attach to
the SolidWorks application and active document. But it would
never show the form.

11. Change the code in your main procedure as follows.

Sub main()

Set swApp = Application.SldWorks
Set Part = swApp.ActiveDoc

'Set up materials list in the form: (column, row)
Dim MyProps(1, 2) As String

Copyrighted
Material

Copyrighted

Material

Copyrighted
Material

Copyrighted

Material

������������'������ � �

��� �

MyProps(0, 0) = "Steel"
MyProps(1, 0) = "0.284"
MyProps(0, 1) = "Aluminum"
MyProps(1, 1) = "0.100"
MyProps(0, 2) = "ABS Plastic"
MyProps(1, 2) = "0.036"

'Populate pull-down list with values
frmMaterials.cboMaterials.Column = MyProps

frmMaterials.Show

End Sub

12. Go ahead and run the main procedure as a test.

You should see your new dialog box show up. This is a result of
the frmMaterials.Show. Every user form object has a show
method that makes the form visible to the user.

If you click on the combo box, you should see Steel, Aluminum
and Plastic listed with their corresponding densities in lbs/in^3.
The OK and Close buttons are not yet defined however.

13. To close the running macro, click the close button in the
upper-right corner or click the stop button in the VBA
editor. Do not close the VBA interface yet.

It was determined that the combo box control would have two
columns for data when its properties were set. These properties
were set at design time since they were set before the code was
running. These two columns were filled with an array of values at
run time or while the program was running.

Copyrighted
Material

Copyrighted

Material

Copyrighted
Material

Copyrighted

Material

� � ������������'������

� � ���

Arrays
An array is simply an m by n matrix of values. To declare an array
you use the form Dim variablename(m,n) As type.

MyProps(1, 2) was declared as a string type variable. In other
words, you made room for two columns and three rows of string
information in that one variable. “Wait! I thought you declared
one column and two rows”! If you haven’t learned this already,
programmers count from zero. If you stick to this practice, you
will avoid confusion in most cases.

ComboBox.Column Property
To populate the combo box with the array, you must tell the macro
where to put things. By typing
frmMaterials.cboMaterials.Column = MyProps you
have told the procedure that you want to populate the column of
the cboMaterials object in the frmMaterials object with the values
in the MyProps array. The combo box control automatically
creates a row for each row in the array. There is no need to assign
the combo box the number of rows required, just the number of
columns.

Command Button Code
In the Model Parameters exercise you learned how to add code to a
command button. You will use the same method for the OK and
Close buttons. You can start with the easy one.

14. In the VBA editor, switch to the user form window and
double-click on the Close button. This will open a code
module window and will create a name for the procedure.

The name of the procedure is directly connected to the name of the
object. For example, the Close button is named cmdClose. So the
procedure is as follows.

Copyrighted
Material

Copyrighted

Material

Copyrighted
Material

Copyrighted

Material

������������'������ � �

��� �

Private Sub cmdClose_Click()

End Sub

The _Click portion of the name is related to the action performed
on the button that causes this code to run. The default action for
command buttons is click. That is what most people do with
buttons isn’t it? In the code module window you will see a list of
actions that can be performed on each object. This is a good way
to learn how to make your user interfaces more complicated. You
can create code for any action in the list.

End Statement
All the Close button should do is end the macro without applying
any material properties. That is easy.

15. Add the End statement as shown.

Private Sub cmdClose_Click()
End
End Sub

Now you will get your macro to do something real!

16. Switch back to the user form window and double-click on
the OK button.

Copyrighted
Material

Copyrighted

Material

Copyrighted
Material

Copyrighted

Material

� � ������������'������

� � ���

17. Add the code in the newly created procedure as follows.

Private Sub cmdOK_Click()
Dim density As Double

'The required density is in kg/m^3
'so multiply by a scale factor

density = frmMaterials.cboMaterials.Column(1, _

frmMaterials.cboMaterials.ListIndex) * 27680

Part.SetUserPreferenceDoubleValue
swMaterialPropertyDensity, density

End
End Sub

Code Description
At this point the macro is fully functional. Try it out on a part. It
will not work on assemblies at this point.

You first declared a new variable density. This variable is
declared as a Double since it will be used in the call
SetUserPreferenceDoubleValue.

Working with ComboBoxes
The procedure also sets the variable density to the value stored
in the combo box object. You used a couple properties of the
combo box object to get the density value that corresponds to the
material selected. The goal is to extract the value from the combo
box’s second column and the current row.

combobox.Column(column, row) [= Variant]

combobox.ListIndex [= Variant]

The Column property should be 1 (remember to count from 0) and
the current row number is represented by the ListIndex property of
the same combo box.

Copyrighted
Material

Copyrighted

Material

Copyrighted
Material

Copyrighted

Material

������������'������ � �

��� �

The Column property requires (column, row) input, so you have
listed column 1 and then the current row. Adding a multiplier of
27680 converts the combo box value from lbs/in^3 to the required
kg/m^3 (specified in the API help).

The last thing added to the code was the End statement prior to
End Sub. This automatically terminates the program so the user
does not have to click OK and then Close to finish.

SolidWorks Materials Library
You could now go in several different directions from your base
macro. You can add additional columns to your combo box
control for hatch type, shaded color and lighting options. This can
be useful if you wish to select a material from the list and have the
density, hatch, color, texture and lighting set accordingly.
Alternatively, you can simply set the SolidWorks Material settings
based on the material library. The remainder of the exercise will
assume the SolidWorks Material Library will be used so the
density setting can be removed.

18. Add the following code changes to set the material settings
from the SolidWorks Material Library.

Sub main()

Set swApp = Application.SldWorks
Set Part = swApp.ActiveDoc

'Set up materials list in the form: (column, row)
Dim MyProps(2, 2) As String

MyProps(0, 0) = "Steel"
MyProps(1, 0) = "0.284"
MyProps(2, 0) = "Alloy Steel"
MyProps(0, 1) = "Aluminum"
MyProps(1, 1) = "0.100"
MyProps(2, 1) = "6061 Alloy"
MyProps(0, 2) = "ABS Plastic"
MyProps(1, 2) = "0.036"
MyProps(2, 2) = "ABS"

Copyrighted
Material

Copyrighted

Material

Copyrighted
Material

Copyrighted

Material

� � ������������'������

� � ���

'Populate pull-down list with values
frmMaterials.cboMaterials.Column = MyProps

frmMaterials.Show

End Sub

Private Sub cmdOK_Click()
'Dim density As Double

Dim material As String

'The required density is in kg/m^3
'so multiply by a scale factor

'density = frmMaterials.cboMaterials.Column(1, _

 frmMaterials.cboMaterials.ListIndex) * 27680

material = frmMaterials.cboMaterials.Column(2, _

frmMaterials.cboMaterials.ListIndex)

'Part.SetUserPreferenceDoubleValue _

 swMaterialPropertyDensity, density

Part.SetMaterialPropertyName2 "", _
 "solidworks materials.sldmat", material

End
End Sub

SetMaterialPropertyName2 is a method of the special ModelDoc2
object called PartDoc. The ModelDoc2 object can be broken into
three additional derived objects that have functionality specific to
the document type. For example, AddMate3 is actually a method
of the AssemblyDoc object. However, the methods from these
derived objects still work with the ModelDoc2 object.

void = PartDoc.SetMaterialPropertyName2(configName,
database, name)

Copyrighted
Material

Copyrighted

Material

Copyrighted
Material

Copyrighted

Material

������������'������ � �

��� �

• configName is passed a string representing the
configuration to change. If it is passed an empty string, all
configurations are changed.

• database defines where the material comes from. This can
be a full path to a library or an empty string. If it is an
empty string, the default material library is assumed.

• name is a string representing the material name as listed in
the material library. For example, “Alloy Steel” would
assign the material as shown below.

Part 2: Working with Assemblies
You can now extend the functionality of this macro to assemblies.
When completed, you will have a tool that allows the user to
assign material properties to selected components in an assembly.
After all, it is usually when trying to figure out the mass of an
assembly when you realize that you have forgotten to set the mass
properties for your parts. And who wants to open up every part
and set the properties individually?

Copyrighted
Material

Copyrighted

Material

Copyrighted
Material

Copyrighted

Material

� � ������������'������

� � ���

Selection Manager
In the Model Parameters exercise we discussed selections using the
SelectByID2 method. However, the code had to be specific to the
item being selected. We had to pass the name of the component.
Instead, you can employ a method that is similar to several
functions in SolidWorks. You can require the user to pre-select the
components he wishes to change prior to running the macro. The
only trick is to program your macro to change the settings for each
item the user selects. The Selection Manager object will be the
key tool for this part of the macro.

SelectionManager Object
Connecting to the SelectionManager object is similar to setting the
ModelDoc2 object (called Part). The SelectionManager object is
a child of the ModelDoc2 object.

19. Add the following code to your main procedure to declare
the selection manager and to attach to it.

Option Explicit
Public swApp As SldWorks.SldWorks
Public Part As SldWorks.ModelDoc2
Public SelMgr As SldWorks.SelectionMgr
Sub main()

Set swApp = Application.SldWorks
Set Part = swApp.ActiveDoc
Set SelMgr = Part.SelectionManager
...

Some of the things you can access from the SelectionManager
object are the selected object count, type, or even the xyz point
where the object was selected in space. In this macro you will
need to access the selected object count, or number of items
selected, and the component object that was selected. Remember
that components in SolidWorks can be either parts or assemblies.
Since we can only set density for parts, we will need to make sure
the item selected is a part. For each item in the selection manager,

Copyrighted
Material

Copyrighted

Material

Copyrighted
Material

Copyrighted

Material

������������'������ � �

��� �

you must get the ModelDoc2 object and then set its material
settings.

20. Add the following code under the OK button’s Click event
as shown.

Private Sub cmdOK_Click()
'Dim density As Double
Dim material As String
Dim Component As SldWorks.Component2
Dim Model As SldWorks.ModelDoc2
Dim i as Integer

'The required density is in kg/m^3 so we're multiplying _
by a scale factor

'density = frmMaterials.cboMaterials.Column(1, _

frmMaterials.cboMaterials.ListIndex) * 27680

material = frmMaterials.cboMaterials.Column(2, _

frmMaterials.cboMaterials.ListIndex)

For i = 1 To SelMgr.GetSelectedObjectCount2(-1)
 Set Component = _
 SelMgr.GetSelectedObjectsComponent3(i, -1)
 Set Model = Component.GetModelDoc
 Model.SetMaterialPropertyName2 "", _
 "solidworks materials.sldmat", material

Next i

Part.ClearSelection2 True
'End
End Sub

For … Next Statements and Loops
As was mentioned earlier, you want to set the material properties
for each part that was selected by the user. What if the user has
selected 500 parts? You certainly do not want to write 500 lines of
code for each item selected. In many cases you will want to apply
the same action to a variable number of items.

Copyrighted
Material

Copyrighted

Material

Copyrighted
Material

Copyrighted

Material

� � ������������'������

� � ���

For … Next statements allow you to repeat a section of code over
as many iterations as you want. Computers are great at this! You
just have to know how many times to loop through the code if you
use a For … Next statement.

For I = 0 To 10
 MsgBox "You have clicked OK " & I & " times!"
Next I

Add this sample code to a procedure and then run the procedure.
You get a VB MessageBox stating exactly how many times you
have clicked OK. That is great if you know exactly how many
times the loop needs to process. In the macro, you do not know
how many times to repeat the loop because you do not know how
many parts the user might select. So you can make the procedure
figure it out for you. You can use the SelectionManager object to
help.

Using Selection Manager Methods
You need to determine how many times to run through the loop.
This should correspond to the number of items selected. This
number can be extracted from the Selection Manager through its
GetSelectedObjectCount2 method. The argument passed is
related to a selection Mark. A value of -1 indicates all selections
will be counted, regardless of Mark. See the SolidWorks API Help
for more information.

For i = 1 To SelMgr.GetSelectedObjectCount2(-1)
 (loop code here)
Next i

Copyrighted
Material

Copyrighted

Material

Copyrighted
Material

Copyrighted

Material

������������'������ � �

��� �

The For loop starts with an initial value of 1 so that it will only
loop if the number of selected items is greater than zero.

GetSelectedObjectsComponent3
The next thing you need to do is get the ModelDoc2 object for
each of the selected items. You will need this object so you can set
its material properties. This requires a two-step process. The first
thing you need to access will be the Component object. To get the
component object you use the SelectionManager’s
GetSelectedObjectsComponent3(item number, Mark) method.
The Mark argument is again -1 to get the component regardless of
selection Mark. You must use the Component object to access its
underlying ModelDoc2 object. Notice the declarations for Model
and Component. They are specific to the type of SolidWorks
object we are accessing (early binding).

GetModelDoc
The Component.GetModelDoc method allows you to access the
underlying ModelDoc object.

Now that you have the ModelDoc2 object assigned to variable
Model, you can use the same code to set the material properties.

Component vs. ModelDoc Objects
If you have been wondering why we have to take the extra time to
dig down to the ModelDoc2 object of the Component object, this
discussion is for you. If you have not and it all makes perfect
sense, move on to the next subject.

Think of it this way – a Component object understands specific
information about the ModelDoc2 it contains. It knows which
configuration is showing, which instance it is, if it is hidden or
suppressed and even the component’s rotational and translational
position in the assembly. These are all things that can be changed
in the Component object. However, if you want to change
something specific to the underlying part such as its material

Copyrighted
Material

Copyrighted

Material

Copyrighted
Material

Copyrighted

Material

� � ������������'������

� � ���

density, or to the underlying assembly such as its custom
properties, then you must take the extra step of getting to the actual
ModelDoc2 object.

Verification and Error Handling
At times you may want to check the user’s interactions to make
sure they have done what you expected. After all, your macro may
not have a user’s guide. And even if it does, how many people
really read that stuff? If you’re reading this, you probably would.
What about the other 90% of the population?

You can make sure the user is doing what you think they should.
First, define some criteria.

• Is the user in an assembly? The user must be in an
assembly to use the GetSelectedObjectsComponent3
method.

• If the active document is an assembly, has the user pre-
selected at least one part? If not, they will think they are
applying material properties while nothing happens.

• Has the user selected items other than parts? If they select
a plane, the macro may generate an error or crash because
there is no ModelDoc2 object.

21. Add the following additions to check for any of these
possible user errors.

Private Sub cmdOK_Click()
'Dim density As Double
Dim material As String
Dim Component As SldWorks.Component2
Dim Model As SldWorks.ModelDoc2
Dim i as Integer

'The required density is in kg/m^3
'so multiply by a scale factor

'density = frmMaterials.cboMaterials.Column(1, _

Copyrighted
Material

Copyrighted

Material

Copyrighted
Material

Copyrighted

Material

������������'������ � �

��� �

 frmMaterials.cboMaterials.ListIndex) * 27680

material = frmMaterials.cboMaterials.Column(2, _
 frmMaterials.cboMaterials.ListIndex)

If Part.GetType = swDocASSEMBLY Then
 'check for selected components
 If SelMgr.GetSelectedObjectCount2(-1) < 1 Then
 MsgBox "Please select one or more " _
 & "components first.", vbCritical
 End
End If
 For i = 1 To SelMgr.GetSelectedObjectCount2(-1)
 Set Component = _
 SelMgr.GetSelectedObjectsComponent3(i, -1)
 Set Model = Component.GetModelDoc
 'if the model is a part
 If Model.GetType = swDocPART Then
 Model.SetMaterialPropertyName2 "", _
 "solidworks materials.sldmat", material
 End If
 Next i
ElseIf Part.GetType = swDocPART Then
 Part.SetMaterialPropertyName2 "", _
 "solidworks materials.sldmat", material
Else
 MsgBox "You can only use this tool " _
 & "in parts or assemblies.", vbExclamation
End If
'End
End Sub

GetType Method
The first If statement is used to determine the active document
type. This could be either a part or an assembly. If the type is the
SolidWorks constant swDocPart then the selected object is a part
and we can apply its material properties. The GetType method
allows us to find the type of model we have accessed. The
constant swDocAssembly refers to an assembly (in case you had
not guessed).

If … Then…Else Statements
If the active document is an assembly, you should check if the user
has selected at least one component before continuing. Checking

Copyrighted
Material

Copyrighted

Material

Copyrighted
Material

Copyrighted

Material

� � ������������'������

� � ���

the GetSelectedObjectCount property of the Selection Manager
object for a value less than one will accomplish this. If it is less
than one the user has failed to select anything.

MessageBox
You can make use of the VB MessageBox function to give the
user feedback. The MessageBox function allows you to tell the
user anything in a small dialog box. This dialog box has an OK
button by default, but it can have Yes and No buttons, OK and
Cancel, or other combinations. If you use anything besides the
default you can use the return value to determine which button the
user selected.

The macro will now provide feedback to the user to make sure they
are using the macro correctly. It makes good programming sense
to build good error trapping into your macros. Users tend to
quickly get frustrated when a tool crashes or generates undesired
results.

Conclusion
This macro now adds some additional value to the SolidWorks
interface. In a simple format you have given the user a quick way
to change material settings in any selected part. This functionality
can easily be extended to changing or listing any setting related to
a model.

