


Mechanics of Materials 

2-1 

Chapter 2 

 

Stress and Strain 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Goal: The learning objectives in this chapter are as follows: 

 

1. Description of intensities of force (stress) and deformation (strain) 

2. Quantification of stress and strain 

3. Physical and mathematical description of the types of stresses and strains 

4. Basic application of these measures to simple problems 

5. Usage of these measures in design problems 
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2 Stress and Strain 

 

2.1 Introduction 

 
The previous chapter dealt with the fundamentals of Statics as used in a course on mechanics of 

materials. The basics of finding the forces on members of a truss or a frame, the forces at the 

connections etc. were described. This chapter takes the next step of describing the use of finding 

the forces in the structure.  

 

The main objective of this chapter is to clearly outline the concepts of stress and strain. Stress is 

intensity of force and strain is intensity of displacement. In the analysis of any structure, forces 

and displacements are inadequate quantities in order to come up with an efficient and structurally 

safe design. It will be seen shortly, how important the knowledge of stress and strain is to an 

engineer. This chapter outlines the different types of stresses and strains, namely the axial and 

shear stress. 

  

There are three different kinds of problems that a reader can expect in any engineering 

environment and they are addressed in the form of examples in this and other chapters.  

1. The first type of problem is the straight forward one in which all the data pertaining to the 

geometry of the structure and the loads are completely specified. The question would involve 

the direct determination of the quantities such as stress and strain using appropriate principles 

and equations. 

2. The second type of problem is of an indirect type. In such problems some of the data 

pertaining to either the geometry or forces is missing but stress or strain data is given. The 

question would be to find the missing geometry or force information. The reader should keep 

in mind that while these problems might appear more difficult on paper, if the principles and 

steps are followed as in the first type of problem the solution process becomes relatively 

simpler. 

3. The third type of problem is design based. In such questions, the allowable values of stress 

and strain quantities and the forces acting on the structure are given. The unknown is the 

geometry of the sections such the cross section details. 

 

2.2 Stress 

 

Stress is such a commonly used term in one’s daily life that nobody really thinks about it when 

using it. A good beginning to try to understand the meaning of stress is to verbalize your 

definition of stress and write it down in the space below. 

 

To Do:  Define stress in your own words 

 

 

Definition: Stress can be broadly defined as the intensity of force. Stress is the internal 

distribution of forces within a body that balances and reacts to the loads applied to it. 
Mathematically a stress is calculated as a force divided by an area on which the force is acting. 

Force
Stress = 

Area
 

Relating this to your own daily experience, you do not feel stressed unless you are faced with 

numerous deadlines in a short period. Stress in your body is something you can only experience 

and describe. Similarly, stress in any object is a hypothetical quantity that is internal to it. Force is 
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real and definite while stress is something that is calculated based on many factors that will be 

shortly described. 

 

Types of Stresses 

 

There are two basic types of stresses – based on the physical action – that are used through out 

this subject. They are: 

1. Axial or Normal Stress 

2. Shear Stress 

 

The basic steps involved in the definition and computation of any stress are 

1. Isolating an object in equilibrium under a set of external forces 

2. Sectioning (cutting a slice) the object into two independent parts – to expose an area on 

which the stress is desired 

3. Using equilibrium principles to compute the internal force on the area 

4. Using principles described in this chapter – calculate the stresses from the internal force and 

the area resisting the internal force 

 

2.2.1 Axial or Normal Stress 

 

Consider a circular rod subjected to two equal and opposite forces acting along the axial 

direction, as shown in Figure 2.1. The axial direction has a special meaning in mechanics of 

materials. Consider a line drawn through the centroid of areas of the cross-section at the two ends 

of an object. This line is called the axial direction as shown in Figure 2.1. 

 

 
Figure 2.1: Definition of the axial direction 

 

Now, cut the rod into two parts by passing a section that exposes an area that is perpendicular to 

the axial direction as shown. By considering the equilibrium of either section, it can be readily 

seen that the internal forces P1 that act on either section must be equal and opposite of the 

external force in that particular section. This is illustrated in the drawing shown below. Thus it 

can be seen that the internal force P1 in each section is equal in magnitude and is acting in the 

direction opposite of the external force P.  

 

 
Figure 2.2: Method of sections to expose an internal area and the internal force 

 

These internal forces cause stresses in the rod. Since the force causing this stress is acting in axial 

direction or in other words, the force is acting normal (synonymous to perpendicular) to the cross-

section, this stress is termed as axial or normal stress. The Greek letter σ is typically used to 

identify the normal stress. The axial or normal stress can be expressed in equation form as 

follows.  
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 1
P

A
σ =  Eqn (2.1) 

There are two types of axial or normal stress that an internal area can experience. These depend 

on the direction of the two equal and opposite external forces. If the two external forces act in 

order to pull the rod apart then the axial stress is tensile in nature (rod is in tension). On the other 

hand if the two external forces tend to compress the rod, the axial stress experienced by an 

internal area perpendicular to this force is compressive. The Figure shown below illustrates the 

difference between tensile and compressive normal stresses. 

 

  
(a) Rod in tenion (b) Rod in compression 

Figure 2.3: Difference between tensile and compressive stress 

 

2.2.2 Shear Stress 

 

The second basic type of stress is called the shear stress – based on the shearing action it causes 

to the internal area. Consider two plates connected by a single bolt and being pulled apart by two 

equal and opposite forces P as shown in the Figure 2.4. The area of the bolt in between the two 

plates experiences a shearing action and the stress the bolt area experience is called shear stress. 

  

 
(a) Elevation 

 
(b) Plan showing bottom side of the plate 

Figure 2.4: Pin in single shear 

 

The internal force on the bolt is computed by taking a section in between the two plates as shown 

in Figure 2.4. This process exposes the internal force. The internal force itself is computed by 

considering the force equilibrium of the section. Here the internal force in the bolt is also P. The 

shear stress on the area (represented by the Greek letterτ ) is given as 
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P

A
τ =  Eqn (2.2) 

Single Shear: Figure 2.4 shows the example of a pin in single shear. The action implies that the 

entire force is taken up by one sectional area of the bolt (the area in between the two plates). 

Equation 2.2 shown above is used to compute this stress. 

 

Double Shear: Figure 2.5 shows the transfer of a force from one plate to two plates, all 

connected by a single bolt.  

P

P/2

Pin

P/2

 
(a) Elevation of the entire assembly 

 
(b) Section showing top and bottom plate 

 
(c) Section of middle plate 

 
(d) Plan showing the bottom side of the plate 

Figure 2.5: Pin in Double Shear 

 

Due to nature of the connection, there are two areas of the bolt that are effective in carrying the 

force P. Figure 2.5(b) shows a section showing the top and bottom plates (each taking up the half 

the force P). The shear stress in the bolt computed from this section is 

 
Force 2

Area 2

P
P

A A
τ = = =  Eqn (2.3) 
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Another way to look at it is by considering the free body diagram of the middle plate, shown in 

Figure 2.5(c). In contrast to the top and bottom plate here, there are two areas of the bolt that are 

resisting the force. The shear stress in the bolts can be computed as follows 

 
Force

Area 2

P

A
τ = =  Eqn (2.4) 

Considering either the top or the middle plate, it is seen that the shear stress is the same. This 

form of action of the bolt is called double shear. 
 

2.2.3 Bearing Stress 

 

The term bearing stress is used to denote a stress that is: 

� Compressive in nature 

� Perpendicular to the surface 

� Occurs between two surfaces 

 

Two cases of bearing stress are presented here as an illustration. The first case represents the 

transfer of a compressive force between two bodies, while the second case represents the bearing 

stress that occurs between a bolt and a plate. 

 

Case 1: Bearing between a column and a pedestal 

Figure 2.6 shows a column transmitting a force to a pedestal. The column transmits an axial force 

P and has a cross section area as shown. The bearing stress on the pedestal acts uniformly over 

the entire bearing area which is also shown in Figure 2.6 

 
Force

Bearing Area

P

b d
σ = =

×

 Eqn (2.5) 

σ

 
Figure 2.6: Transfer of load from column to pedestal 

 

Case 2: Bearing between bolt and a plate 
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Figure 2.7: Bolt in shear and bearing 

d

t

dF

dFx

dFy

dF

dFx

dFy

d

 
Figure 2.8: Actual bearing stress experience by the hole 

 

When the circular bolt bears against the surface of the hole, the stress theoretically acts along the 

radial direction over the entire semi-circular area as seen in Figure 2.8. However, the vertical 

components of the force acting on each symmetric area cancel out and only the horizontal 

components add up to the external force P. In order to calculate the bearing stress one can 

alternatively take the projection of the cylindrical area onto a vertical surface as shown in Figure 

2.9.  

 
Figure 2.9: Projected area for stress computation 

 

The bearing stress on the surface can be computed using the following expression 

 
Force

Projected Area hole plate

P

d t
σ = =

×

 Eqn (2.6) 
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2.2.4 Practical Units of Stress 

 

As a student’s training to be an engineer progresses, it will be realized that units of any physical 

measure are what gives it a meaning. Here, since stress is a force unit divided by an area unit, the 

basic unit of stress is 

� Pounds per square feet - psf  -  in U.S. Customary units 

� Newton per square meter - N/m2 
 -  in SI Units  

 

U.S. Customary Units: 

Since psf is a rather small quantity (one pound acting on a square foot of area) there are other 

derivatives of this unit which are more frequently used. The list below gives some frequently used 

units for stress 

� psi - Pound per square inch 

� ksi - kilo Pound (1000 lbs.) per square inch 

� msi - million Pounds (1,000,000 lbs.) per square inch 

 

SI Units: 

In SI Units, one Pascal (Pa) defined as a Newton force acting on one square meter of area. 

 

To Do:  The stress your weight exerts per square meter of floor area = ____ Pa. 

 

From the above numerical value it can be clearly seen that a Pa is not a practical unit to use. A Pa 

is a very small stress value. Even normal stress values would run into seven to eight digit 

numbers. Some of the frequently used units and its multiples for stress in SI units are given below 

� kPa - kilo Pascal - 103
 N/m

2  
= 1 kN/m

2
 

� MPa - Mega Pascal - 10
6
 N/m

2
 = 1 N/mm

2
 

� GPa - Giga Pascal - 10
9
 N/m

2
 = 1000 MPa 

 

2.2.5 Dependence of Stress on Force and Area 

 

The example shown below illustrates an interesting dependence of stress on the force and an area. 

It is illustrated in the example that while the internal forces in the section of the rod and the 

physical rod itself is identical, different cross-section areas of the rod experience different kinds 

of stress. The student is encouraged to think and understand this example to get a better insight 

into the concept of stress. 

 

Example 2-1: Illustration of the Concept of Area and Force and Stress 

Problem Statement: A rectangular bar of dimensions 2 3 24 in in in× ×  is subjected to an axial 

force of 6000 lbs as shown in the figure. At point ‘A’ on the bar as shown, determine the stresses 

at ‘A’ for the following two cases.  

     A

2 in

3 in

6000 lbs6000 lbs
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Required:  1) Find the stresses at ‘A’, if the cross sectional area is cut perpendicular to the axial                     

direction. 

                    2) Find the stresses at ‘A’, if the cross sectional area is cut at an angle of 30 degrees 

to the horizontal as shown. 

Solution:  Part 1 

Step 1:  Section the bar at point A and determine the net internal force acting on the section cut 

from the force equilibrium equation. 

Sign Convention:  If the internal forces on the sectioned area are shown acting away from the 

area the physical action is tension (considered positive here).  

 
 

In the above figure the two sections can be defined as the left section and the right section. From 

the left section free body diagram the following equilibrium equation can be written 

1

1

0: 6000 0

6000 . (+ve hence tension)

x
F P

P lbs

→

= ∴− + =

= +

∑  

 

Step 2:  Determine the area resisting the force 
2

1
3 2 6 A in= × =  

 
Step 3:  Since the force P1 acts perpendicular and away from the area, there is only one stress 

acting on this area – which is the axial or normal stress. Hence the stress at ‘A’ is given as 

2

6000 .
 1000  (tensile)

6 

lbs
psi

in
σ = =  

 

 

Solution: Part 2 

P26000 lbs

30°
 

 

Step 1:  Section the rod at point ‘A’ and determine the net internal force acting on the section cut 

from equilibrium 

2

2

0 :  6000 0

6000 . (acting outwards as shown)

x
F P

P lbs

→

= ∴− + =

= +

∑  
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Step 2:  Determine the area resisting the force. Here the actual area is the inclined area, which is 

greater than the visible cross section of 6 in
2
 of the bar. 

2

2

3 2
12 

cos60
A in

×
= =

°
 

 

Step 3:  Since the force P2 acts neither perpendicular nor parallel to the area, this force is 

resolved into components perpendicular P
⊥

 (to get the normal stress) and parallel P
P
 (to get the 

shear stress).  

P║

6000 lbs

30°

P2

P ┴

 

2

|| 2

sin30 6000sin30 3000 

cos30 6000cos30 5196.15 

P P lbs

P P lbs

⊥
= = ° =

= = ° =

 

 

Step 4: Determine the stress due to the parallel (shear stress) and perpendicular (normal stress) 

components of the forces acting on the area 

2

2

2

2

3000 .
 250  (tensile)

12 

5196.15 .
433  (shear)

12 

P lbs
psi

A in

P lbs
psi

A in

σ

τ

⊥
= = =

= = =

P

 

 

Note: The point A is the same, but the stresses acting at the point depend on how the area is 

sectioned. It could be either normal or a combination of normal and shear. Hence, we never refer 

to stress at a point, rather a point on a given area. The significance of this concept will be 

illustrated in a later chapter of stress transformations. 

 

 

Q: From Example 2-1 an important question may arise in your mind. Why should we be 

concerned with the determination of stress values on two different planes? A detailed answer to 

this will be evident as you go through related topics that appear later in the course. However, a 

brief explanation is given at this point. 

 

Any material typically has different failure stress values in tension, compression and shear. 

Simplistically, this can be thought of as an experimentally determined limiting stress value, which 

when exceeded causes failure or fracture in a material. Ductile materials such as aluminum and 

steel tend to have a lower failure stress value in shear as compared to tension. On the other hand, 

brittle materials such as cast iron, chalk, concrete etc. tend to have a lower tensile failure stress 

value compared to shear.  

 

Figure 2.10 shows the failure/fracture of two geometrically identical specimen; one of which is 

made of aluminum which is a ductile material (tends to fail in shear first as it has a lower shear 

failure stress value) while the second specimen is made of cast iron (tends to fail in tension first). 
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(a) Cup and cone failure of Aluminum (b) Brittle failure in cast iron 

Figure 2.10: Failure modes in a ductile (Aluminum) and brittle (Cast Iron) specimen in tension 

 

When a pure axial force is applied to the rod, note that the failure mode for the aluminum 

specimen has a diagonal shape, while the cast iron specimen fractures along a plane perpendicular 

to the axial force. This clearly indicates that the shear stress on an inclined plane of the aluminum 

failed before a normal stress on a plane perpendicular to the normal force reached its failure 

value. The case is reversed for the brittle specimen, where the normal stress on a plane 

perpendicular to the axial force reached its limiting value before the shear stress on an inclined 

plane could reach its limiting value. This concept along with more details associated with this 

topic will be addressed in a subsequent chapter on stress transformations. 

 

2.2.6 Force, Traction and Stress 

 

So far we have seen the relationship between a force and two kinds of stresses, namely the normal 

and shear stress. It has been shown that a stress is either parallel or perpendicular to an area. 

There are three terms that are frequently used in this subject. They are force, traction vector, 

stress tensor. The distinction between these terms is described in Figure 2.11. 

 

 
Figure 2.11: Internal force, Traction vector and Stress components 

 

Force: The net internal force on the area sectioned in the body, is calculated from equilibrium 

consideration of each section. This resultant force is a vector quantity. In Figure 2.11 this is 

depicted by the vector P1. 

 

Traction (Stress) Vector: This quantity has the units of stress but has the characteristics of a 

vector. It is defined mathematically as 

Area

P
t =

r
r
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This quantity is in the direction of the resultant force and has the units of stress, hence it is also 

known as the stress vector. In this subject this term is not used frequently. 

 

Stress: Once the internal resultant force P1 is resolved into parallel and perpendicular 

components and these components are divided by the cross-section area in order to get the two 

stress components that have been discussed so far. Figure 2.11 illustrates the stress terms. 

 

Example 2-2: Tensile stress, shear stress and bearing stress 

Problem Statement: A pin is used to transmit the force from the middle plate to the two plates at 

the top and bottom as shown. Determine the different kinds of stresses acting on the plate and the 

bolt in the process of transmitting this force.  The thickness of each of the plates is 0.5 inches. 

 

 

Required: Find the following stresses 

                       a) Stress in the plate at a section away from the home 

                       b) Stress in the plate at a section taken at the center of hole 

                       c) Shear Stress in the bolt 

                       d) Bearing stress on the top plate 

                       e) Bearing stress on the middle plate 

Solution:  

Step 1: Determine the nature and magnitude of stress in the plate at a section away from the hole. 

This stress is tensile in nature. In order to determine the stress the following section FBD is used, 

the internal force determined and the stress computed by dividing the force by the area resisting 

the force.  

2

10 
6.67 

3 0.5 

k
ksi

in
σ = =

×
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0.5 in

3 in

10 k

10 k

 

 

Step 2: Stress at a section of the plate through the center of the hole: This concept is important as 

the area at this section is the least. Consequently, the stress at this section is the maximum stress. 

2

2

Force

      3 0.5 0.5 0.5 1.25 

10 
8  (Tensile)

1.25 

net

net gross hole p

A

A A d t

in

k
ksi

in

σ

σ

=

= − ×

= × − × =

= =

 

 

 

Step 3: Shear Stress on the bolt. Since two areas of the bolt resist the force this bolt is in double 

shear  

2

2

Force 10 

2 2

10 
  25.46 

2 0.25

k

A r

k
ksi

τ

π

π

= =

× ×

= =

× ×

 

 

Step 4: Bearing stress on the middle plate  

Force Force

Bearing Area

10 
  40 

0.5 0.5 

bolt plated t

k
ksi

in in

σ = =

×

= =

×

 

 

Step 5: Bearing stress on the top and bottom plate  

Force Force

Bearing Area

5 
  20 

0.5 0.5 

bolt plated t

k
ksi

in in

σ = =

×

= =

×

 

 

Example 2.3: Design problem using a frame problem 

Problem Statement: Given that the diameter of the bolt at C connecting the two members of the 

frame is 0.5 in, determine the shear stress acting in the bolt.  
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Required: Find the shear stress in the bolt. 

Solution: 

Step 1: Determine the force acting at C. For this a frame analysis is required. From the figure it 

can be seen that member ABC is a multi-force member while member CDE is a 2-force member.  

Equilibrium of a 2F member: Forces are acting at C and E only. Hence, the resultant force goes 

along the line joining C and E. From geometry, the angle that this line makes and hence the 

resultant, is as shown in the figure. 

3
tan

2

56.31

θ

θ

=

= °

 

θ

 

Step 2: Draw the free body diagram of the multi force member ABC, determine the force at C. 

The force at C is the force acting in the bolt. 
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0

( sin ) 3 10 5 0

( sin56.31 ) 3 10 5 0

20.03 

A
M

C

C

C kips

θ

=

∴− × − × =

∴− ° × − × =

= −

∑

 

2 ft

3 ft

10 k
B

C

AX

AY

 
 

Step 3: The shear stress in the bolt is then 

2

20.03 
102 

(0.5) / 4bolt

B kips
ksi

A
τ

π

= = =  

 

 

2.3 Deformation  

 

So far we have discussed the ‘strength’ aspects of mechanics of materials. As outlined in the 

introduction, the second fundamental characteristic of this course is the stiffness aspect. When an 

object is subjected to a set of external forces and moments it changes in shape. In other words, the 

object deforms. A measure of the stiffness of an object is the amount of deformation it 

experiences. Lesser the deformation, greater is the stiffness of the body.  

 

Two basic types of deformation are considered in the following sections. They are, 

1. Axial Deformation 

2. Shear Deformation 

These two types of deformations and the different measures that exist are described in detail 

below. 

 

2.3.1 Axial Displacement, Elongation and Axial Strain 

 

We will consider bodies subjected to an axial force in this chapter. There are three fundamentally 

different measures to describe the deformation of any body. The three terms can be briefly 

defined as follows: 

1. Displacement → of a point. A specific point is said to displace when the object deforms. The 

displacement is measured in feet, meters, inches, mm etc. Displacement can be positive or 

negative. A positive displacement indicates that the point has moved in the positive axis 

direction. This term will be denoted with the letter u. For example uA denotes the 

displacement of point A. 

� Sign Convention: + ve indicates a displacement in the + ve axis direction.  
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� Units: Length units (Example: ft. in US units or mm in SI Units). 

2. Elongation → of a region. This measures the stretch of a region in the bar. It can be 

visualized as the change in distance between two points after a deformation has occurred. 

This term will be denoted by the Greek letterΔ . For example 
AB

Δ denotes the elongation of 

region AB. 

� Sign Convention: +ve indicates elongation of the bar whereas -ve indicates compression 

of the bar. 

� Units: Length units (Example: ft. in US units / mm in SI Units). 

3. Axial Strain → in the region. The axial strain in a region is defined as the intensity of 

elongation. It is defined as the elongation of region divided by its original length. This term 

will be denoted using the Greek letterε . For example, 
AB

ε denotes the axial strain in region 

AB. The axial strain is mathematically defined as follows 

 AB

AB

AB
L

ε

Δ
=  Eqn (2.6) 

� Sign Convention: +ve indicates elongation of the bar / -ve indicates compression of the 

bar. 

� Units: No units. However, (in. /in.), (mm/mm) etc. are frequently used. 

The following example clearly illustrates the difference between the three measures.  

Consider a circular rod subjected to an axial force as shown in Figure 2.12. Furthermore, consider 

two points on the rod A and B that are half inch apart. Point A is one inch from the origin O. 

After elongation the points now are located as shown. 

 

Figure 2.12: Axial displacement, elongation and strain 

 

Original locations: 

� Point A: 1 inch from the origin O 

� Point B: 1.5 inches from the origin O 

After deformation:  

� Point A: 1.1 inches from the origin O 

� Point B: 1.7 inches from the origin O 

 

Various deformation measures are defined as follows. 

Displacement of points: 

� uA = 1.1 – 1.0 = +0.1 in 

� uB = 1.7 – 1.5 = +0.2 in 
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Elongation of AB: 

� 
' 'AB ABA B

0.6 0.5 0.1  (extension)l l inΔ = − = − = +  

 

Axial Strain in AB: 

� 
' ' ABA B

AB

AB

0.6 0.5
0.2 /

0.5

l l
in in

l
ε

− −
= = = +  

 

General Definition of Axial (Extensional) Strain 

 

Consider a line AB in an object as shown in the Figure 2.13 subjected to a combination of forces. 

After the application of forces the line elongates (or contracts) to A’B’, 

 

 
Figure 2.13: Object and line AB before and after deformation 

 

Let the length of the line in the originally undeformed body be L and the length after deformation 

be L1. If ε  is the extensional strain at any point on the line then the incremental change ( LΔ ) of 

any infinitesimal length of the line (dL) can be used to define the new length of the infinitesimal 

segment (dL1) as follows 

1
dL dL L

L dLε

= + Δ

Δ =

 

Important: In the above equation we consider an infinitesimal segment since the extensional 

strain at any point on the line can have a different value. Consequently, the new length of the line 

can be expressed in an integral form as 

1 1

1

1

(1 )

B B

A A

B B

A A

B

A

L dL dL

L dL dL

L L dL

ε

ε

ε

= = +

= +

= +

∫ ∫

∫ ∫

∫

 

In general, ε can be any function, which can then be integrated. 

 

Special Case: Axially Loaded Bar subjected to a constant axial force   

Consider a bar having a constant cross sectional area subjected to a constant axial force through 

out as shown in Figure 2.14. 
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Figure 2.14: Axially loaded bar 

 

Two situations are now considered to derive the expressions for change in length. 

a) Small Strain Deformation: If the elongation in the bar is such that change in the total 

elongation is very small, it is reasonable to assume that the extensional strain value ε is 

constant throughout the bar. In this condition the change in length can be written as follows 

or

change in length

original length

L dL dL L

L

L

ε ε ε

ε

Δ = = =

Δ
= =

∫ ∫
 

b) Large Strain Deformation: However, if the elongation of the bar is such that the new length 

is significantly larger than the original length (say a one inch segment becomes 1.5 inch) then 

the strain equation defined by Equation (2.6) cannot be used. In this case it must be noted that 

reference length (L) keeps changing. Within this length L, consider an infinitesimally small 

length L1 which changes to L2. Hence the strain (called the true strain) can be expressed as 

 

2

2

1

1

2 1

2 1

1 1

ln( ) |

)
  ln( ) ln( ) ln( ) ln( )

  ln(1 )

L

L

true L

L

dL
L

L

L L L
L L

L L

ε

ε

= =

+ Δ
= − = =

= +

∫

 Eqn (2.7) 

In the equation (2.7) above the true strain (also called as log strain) value has been expressed 

in terms of the small strain. The problem of large strains is not addressed in this book and will 

be discussed in advanced courses such as Continuum Mechanics. 

 

Small strains and True Strains 

The conceptual example shown below gives an insight into how the strain definition in a large 

strain problem must be viewed. Consider a twelve inch rod, as shown in the figure below 

subjected to an axial force as shown. Assume that a gage length AB of one inch becomes 1.5 inch 

after the application of the load.  
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The computation of small strain 
0

ε  and the true strain is shown below. 

(1.5 1.0) 
Small (Engineering) strain: 0.5

1.0 
o

o

l in

l in
ε

Δ −
= = =  

It can be seen that the gage length lo used, the denominator, remains constant through out the 

entire deformation process (one inch). A strain of 0.5 or fifty percent is clearly an example of a 

rod undergoing large deformations.  

 

In the computation of large strains the gage length is not constant. The computation is shown 

below where the problem is broken down into ten segments wherein the gage length is increased 

to the new value for every computation of the strain. It has to be kept in mind that the equation 

used to define and compute strain as the change in length divided by the gage length is valid only 

for small strains; hence the usage in the manner shown below is valid. In other words, the 

computation of strain (true strain) for the large deformation case is broken down into many small 

strain problems. 

Strain Definition: 
x

l

l
ε

Δ
=  

l lΔ  
x

ε  

1.0   

1.05 0.05 
0.05

0.05
1

=  

1.1 0.05 
0.05

0.0476
1.05

=  

1.15 0.05 
0.05

0.04545
1.1

=

1.2 0.05 
0.05

0.0435
1.15

=  

1.25 0.05 
0.05

0.0416
1.2

=  

1.3 0.05 
0.05

0.04
1.25

=  

1.35 0.05 
0.05

0.0385
1.3

=  

1.4 0.05 
0.05

0.037
1.35

=  

1.45 0.05 
0.05

0.0357
1.4

=  

1.5 0.05 
0.05

0.0345
1.45

=  

  0.4132
x

ε =∑  

Table 3.1: True strain 

 

True Stress-True Strain Curve: The mathematical equation representing true strain has been 

shown to be defined by a logarithmic equation. In a similar manner the true stress can also be 

shown be related to the engineering stress definition as shown below 
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ln(1 )

ln(1 )

true o

true o

ε ε

σ σ

= +

= +

 

The difference between the stress-strain graphs for the small deformation case ( )
o o

σ ε− and the 

large deformation case ( )true true
σ ε− is shown below. Note that in the large deformation case no 

portion of the stress strain graph goes into a descending portion. 

 

true
σ

true
ε

 
Figure 2.15: Graph of true stress vs. true strain 

 

It can be seen that if the segments is increased to twenty or more the true strain value can be 

exactly obtained. 

 

2.3.2 Shear Strain 

 

The other basic type of strain, caused by shear stresses, is called shear strain. Unlike axial strain 

which measures the change in the length of a line element, the shear strain is a measure of the 

change in an angle. 

 

A

B

B’

2
π

 

2
π γ+

 
(a) Before deformation (b) After deformation 

Figure 2.16: Physical definition of shear strain 

 

Consider an object subjected to forces as shown in Figure 2.16. Within this object consider two 

lines, AB and AB’, which are perpendicular to each other. When the forces act on the object the 

angle between the two lines changes and let the new angle be (
2

π
γ+ ). The change in the angle 

γ is defined as the shear strain.  
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� Sign Convention: +ve sign indicates that the angle between the two lines has increased and a 

–ve sign indicates a decrease in the angle. 

� Units: Radians (all engineering angular units are measured in radians). ‘Radians’ is a 

dimensionless quantity. 

 

2.4 Hooke’s Law Relating Stresses and Strains 
 

In the chapter so far, we have discussed two primary physical quantities, namely stresses and 

strains. Stress is a measure of the intensity of the force while strain is a measure of the intensity of 

deformation. In order to have a tool to predict the deformation in the body subjected to a set of 

forces, we need a relationship which connects the stresses to strains. Such a relationship cannot 

be derived and is determined purely by experiments, hence is called a law. 

 

Isotropic Material:  An isotropic body is considered to be made of a material, which is assumed 

to be uniform in its material properties in all directions. Examples of isotropic materials are steel, 

brass, aluminum etc. All these materials can be visualized to be homogeneous and uniform.  

 

This section describes some basic experiments that are performed in order to determine the 

relationship between stresses and strains. Two basic types of stresses and strains have been 

defined here relating 

� Axial strains and axial stresses 

� Shear strains and shear stresses 

 

2.4.1 Young’s Modulus and Poisson’s Ratio 

 

There are two basic and independent elastic constants that can be determined from a simple 

uniaxial test on a standard specimen. A uniaxial test represents a state of axial stress and axial 

strain in the specimen. Figure 2.17 shows a schematic representation of the uniaxial tension test. 

 

P

P
 

Figure 2.17: Schematic representation of a uniaxial tension test 

 

No specific material (such as aluminum or steel) is considered in this explanation. The 

experimental observations typically are recorded as a force (P) and elongation ( LΔ ) relationship. 

Elongation is measured by using either a clip gage or a strain gage with a fixed and specified gage 

length (L). The axial stress and strain at any data point is then determined from the following 

equation. 
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;   
P L

A L
σ ε

Δ
= =  

where, A is the area of cross section of the bar. Figure 18 shows a typical stress-strain curve for a 

tension test on a metallic specimen. 

 

Hooke’s Law: It can be seen from Figure 2.18 that in the region where the strains are low the 

experimental curve can be represented as a linear curve. This linear relationship, called Hooke’s 

Law, can be expressed as 

 Eσ ε=  Eqn (2.8) 

where, E is an elastic constant called the Young’s modulus or modulus of elasticity. The slope of 

the line represents the modulus of elasticity and has the same units as that of stress. However it is 

typically three orders in magnitude to that of the stress value. 

 

ε

σ
-
A
x
ia
l 
S
tr
es
s 
(k
si
)

yieldσ

 
Figure 2.18: Results from a uniaxial tension test 

 

Another observation that is recorded in a tension test corresponds to the observation that the cross 

sectional area at the middle of the specimen decreases as the elongation in the longitudinal 

direction occurs. This phenomenon, known as the Poisson’s effect, represents the decrease in the 

lateral dimension due to a longitudinal elongation. Figure 2.19 shows a schematic representation 

of the axial strain and Poisson’s effect.  

 

Figure 2.19: The axial strain and Poisson’s effect 
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The strain in the longitudinal ( longitudinalε ) and the lateral (
lateral

ε ) can be defined as follows 

'

'

longitudinal

lateral

L L L

L L

D D

D

ε

ε

Δ −
= =

−
=

 

In a typical tension test the longitudinal strain is positive (elongation) while the lateral strain is 

negative (contraction). Poisson’s effect is now defined using a physical or elastic constant called 

Poisson’s Ratio (ν ) (Greek letter – pronounced as ‘nu’ or ‘new’). 

lateral

longitudinal

ε

ν

ε

= −  

The negative sign is introduced in order to have a positive constant value. For most metals the 

value of Poisson’s Ratio ranges between 0.25 and 035. It will be shown in a later section that the 

value of this ratio can never exceed 0.5. 

 

Table 2.2 gives typical values of the Elastic Modulus and Poisson’s ratio for some commonly 

used materials in engineering. 

 

Young’s Modulus Material 

ksi GPa 

Poisson’s Ratio 

Aluminum 10,000 70 0.33 

Brass 14-16,000 96-110 0.34 

Concrete (compression) 2.500-4,500 18-30 0.1-0.2 

Steel 29,000 210 0.28-0.3 
Table 2.2: Table of material properties of some common materials 

 

Material behavior and material properties are described in greater detail in a later chapter. 

 

2.4.2 Shear Modulus 

2
π

τ

τ

2
π γ−

 
Figure 2.20: Shear stress-strain 

 

Consider a cube subjected to a shearing action (shear stress τ ) as shown in Figure 2.20, which 

shows the two dimensional elevation of the cube. Due to the action of the forces the bottom left 

right angle changes and this change in the angle is called the shear strain ( γ ). Considering the 

cube to be made of a metal, as the shear stress is increased it can be observed that the shear strain 

also changes and the relationship between the two is a linear one. This linear relationship can be 

expressed as 

 Gτ γ=   

where, G is called the Shear Modulus or Modulus of Rigidity, and is the third elastic constant 

defined so far in this chapter. For any material, the elastic behavior can be completely defined by 
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only two elastic constants. It will be shown in a subsequent chapter that the relationship between 

the shear modulus, elastic modulus and Poisson’s ratio can be expressed as 

2(1 )

E
G

ν

=

+

 

 

Example 2.4: Determination of elastic constants 

Problem Statement: A circular rod made of aluminum is 2.25 inches in diameter and 12 inches 

in length is subjected to an axial force of 32 kips. At the end of the tension test the rod length was 

measured to be 12.00938 inches and its diameter at the center decreased to 2.249415 inches. 

Determine the two elastic constants for aluminum, namely Young’s modulus E and the Poisson’s 

ratio ν. 

12 in

32 k32 k

2.25 in
 

 

Required: Find the Young’s modulus and Poisson’s ratio of aluminum 

Solution:  

Step 1: Determine the change in length and diameter of the bar 
12.00938 12 0.00938 

2.249415 2.25 0.000585 

l in in in

d in in in

Δ = − =

Δ = − = −
 

 

Step 2: Determine the axial and transverse strain 

0.00938 
0.000782 / .

12 

0.000585 
0.00026 / .

2.25 

x

transverse

l in
in in

l in

d in
in in

d in

ε

ε

Δ
= = =

Δ −
= = = −

 

 

Step 3: Since this is a uniaxial test the equation of Poisson’s ratio transverse

longitudinal

ε

ν

ε

= −  can be used. 

The elastic modulus and the Poisson’s ratio is now determined 

2

0.00026
0.333

0.000782

32 
8,030 

(1.125)

8,030 
10,268 

0.000782

Hence  

10,300  and 0.333

transverse transverse

longitudinal x

x

x

x

x

x

E

P kips
psi

A

psi
E psi

E ksi

ε ε

ν

ε ε

σ

ε

σ

π

σ

ε

ν

−

= − = − = − =

=

= = =

= = =

= =
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2.5 Design Issues 

 

The goal of the study of mechanics of materials is to establish the fundamental principles based 

on which any structure such as buildings, bridges, cars, micro devices etc. can be designed. It will 

be eventually seen that actual designs, while based on principles of mechanics of materials, 

incorporate many practical conditions and issues. 

 

Yeild Stress Material 

ksi MPa 

Aluminum 2.9 20  

Brass 10.15 – 79.77 70-550  

Iron (Wrought) 30.46 210  

Steel 40.6 - 232 280-1600  
Table 2.3: Yield stress values for some common materials 

 

The design of a structure involves the determination of the cross section geometry necessary to 

withstand the loads applied to it. The uniaxial test on materials is a very popular method to 

determine the yield stress fy of any material. For isotropic materials this is statistically a constant 

value. The design process however uses the allowable stress values which is the yield stress value 

divided by a factor of safety (FOS). The factor of safety accounts for uncertainties in material 

properties and actual loads. Table 2.3 gives a partial list of some commonly used materials and 

their yield stress values. The factors of safety can also vary with the type of behavior that the 

structure is experiencing.  

 

The basic design procedure for axially loaded members or bolts in shear or in bearing is to first 

find the force acting on the member P and then divide the force by the allowable stress value fall 

in order to find the area as shown below 

.

.

req

all

P
A

f
=  

From the area required either the bolt diameter or the thickness and the width of the plate required 

are determined.  

 

Consider a simple example of a circular rod, as shown in the figure, made of steel and is required 

to carry an axial force of 6 kips. Given that the yield stress of steel is 50 ksi and using a factor of 

safety of 1.5, it is required to find the diameter of the steel rod.   
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.

2

2

.

.

50 
33.33 

1.5

6 
0.18 

33.33 4

0.478      

Provide 0.5 .

y

all

req

all

f ksi
f ksi

FOS

P k d
A in

f ksi

d in

d in

π

= = =

= = = =

≥

∴ =

 

 

Gross and Net Areas: In tension members the concept of gross and net areas is an important 

entity. The section taken across the net area is the least area available for the material to resist the 

force; hence it experiences the greatest stress value. Consequently, the allowable stress value is 

first reached in the net section. Hence, the designer must exercise care in using the net area in 

order to determine the width or the thickness of the section. 

  

Consider the plate with a hole subjected to tensile forces, as shown in the figure. If the thickness 

of the plate to be designed is ½ in determine the width of the plate. The plate is made of steel as 

in the previous problem and is subjected to a force of 40 kips. 

 

2

.

40
1.2 

33.33 

0.75 .

1.2

1.2 (0.5) (0.75 0.5)

3.15      

Provide 3.25 

net

all

net g hole p

hole

p hole p

P k
A in

f ksi

A A d t

d in

bt d t

b

b in

b in

≥ = =

= −

=

= −

= − ×

≥

=

 

 

Example 2.5: Design problem 

Problem Statement: If the frame in the problem is made of members that are 3/4 in. thick, if the 

allowable stresses are 24  and 33.33 all bearingksi f ksiτ = = , determine the diameter of the bolt 

required. 
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Required: Find the diameter of the bolt 

Solution:  

Step 1: Determine the force acting at C. For this a frame analysis is required. From the figure it 

can be seen that member ABC is a multi-force member while member CDE is a 2-force member.  

 

Equilibrium of a 2F member: Forces are acting at C and E only. Hence, the resultant force goes 

along the line joining C and E. From geometry, the angle that the resultant is shown in the figure. 

θ

 
3

tan
4

36.87
o

θ

θ

=

=

 

 

Step 2: Draw the free body diagram of the multi force member ABC, determine the force at C. 

The force at C is the force acting in the bolt. 

sin (3) 10(5 ) 0

20.83 

B ft

B kips

θ− − =

= −

 

2 ft

3 ft

10 k
B

C

AX

AY

 
 

Step 3: The force in the bolt is 20.83 kips. The design of the bolt diameter is to be determined 

from both the shear stress and the bearing stress criterion.  
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From the shear stress criterion: 

2

.

2

2

20.83 
0.87 

24 

0.87 
4

1.1      

1Provide 1  .
8

bolt

all

B kips
A in

ksi

d
in

d in

d in

τ

π

= = =

=

≥

∴ =

 

From the bearing stress criterion: 

2

.

20.83 
0.625 

33 

0.625

0.75

0.8332      

1Provide 1  
8

b

all

b bolt plate

bolt

B kips
A in

f ksi

A d t

d

d in

d in

= = =

=

≥

≥

=

 

It can be seen that shearing stress criterion gives a greater diameter, which is the diameter to be 

provided. 
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2.6 Summary 

 

The key terms introduced in this chapter are summarized below. 

1. Tension (Normal Stress): This type of stress is caused by force acting at the centroid of the 

section, in a direction perpendicular and away from the area. The effect on the body is to 

stretch it. 

2. Compression (Normal Stress): This type of stress is caused by a force acting at the centroid 

of the section, in a direction perpendicular and into from the area. The effect on the body is to 

crush it. 

3. Single Shear: A shear stress acts parallel to an area. A pin is said to be in single shear if only 

one cross section area of the bolt is effective in resisting the force. 

4. Double Shear: A pin or bolt is said to be in double shear if two areas of the bolt are effective 

in resisting the applied force as seen in Figure 2.5.  

5. Bearing Stress (Normal Stress): A bearing stress is compressive nature. However, this is a 

stress on the surface between two objects. The characteristic of this stress that it acts 

perpendicular to the surface and into the surface. 

6. Displacement: A specific point is said to displace when the object deforms. The 

displacement term is used to denote the actual movement of a point.  

7. Elongation - of a region; This measure the stretch of a region in the bar 

8. Axial Strain - in the region; The axial strain in a region is defined as the elongation of region 

divided by its original length 

9. Shear Strain: When the forces act on the object the angle between the two lines changes. 

The change in the angle γ is defined as the shear strain and is measure in radians. 

10. Elastic or Material Properties: The elastic properties of a material are its Young’s modulus, 

Poisson’s ratio, Shear Modulus and the Bulk Modulus, 

11. Isotropic Material: A homogeneous material with a uniform form is said to isotropic if it has 

identical material properties in all directions. 

12. Young’s Modulus: The Young’s modulus or the Elastic modulus (E) is a measure of the 

initial stiffness of the material and is determined from the slope of the stress strain graph from 

a tension test of the material. It has the units of GPa or ksi. 

13. Poisson’s Ratio: The Poisson’s ratio quantifies the Poisson’s effect which is the phenomenon 

of the transverse diameter shortening upon being pulled in the longitudinal direction. It has no 

units. 

14. Shear Modulus: The shear modulus (G) relates the shear strain to the shear stress and 

represents the material’s ability to resist a shear strain. 
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2.7 Problems: 
 

2.1 Define axial direction. 

 

2.2 Define a normal stress. 

 

2.3 A steel bar has a radius of 10 mm and is axially loaded by force of 4 kN. Determine the axial 

stress and express your answer in MPa units. 

 

2.4 An aluminum rod of 0.5 in diameter is experiencing an axial stress of 30 ksi. What is the 

axial force in the bar? 

 

2.5 Determine the axial stress in a rectangular bar of cross section area 10mm x 50mm and 

loaded by a force of 20 kN as shown in the figure. 

PP

 

 
 

2.6 Determine the axial stress and shear stress on the area along section a-a and b-b. The 

rectangular bar is having the cross section area and loading same as in problem 2.5.   

a. 

 
b. 

 
 

2.7 The figure shown in problem 2.6, if the shear stress on section a-a is 350 MPa, determine:  

a) Axial force in the rod. 

b) Axial stress on the section b-b 

 

2.8 Two pieces are glued as shown in the figure, given that the cross section of the wood at the 

ends is 1½ in x 3½ in and if the maximum shearing stress that the glue can take is 3 psi 

determine the maximum P that can be applied to the bar. 

 

1 ½ in

3 ½ in
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2.9 In the above example if the maximum axial stress in the wood is 5 psi determine the 

maximum P that can be applied to the bar. 

 

2.10  Using the data and information from problem 2.8 and 2.9, if the maximum tensile stress in 

the glue is 5 psi, determine the maximum load P that can be applied. 

 

2.11 Two plates are connected as shown in the figure. If the width of the plates is 3 in, the 

thickness is ½ in and the diameter of the bolt is ¾ in determine 

a) maximum tensile stress in the plate 

b) shear stress in the bolt 

c) bearing stress on the plate 

P

P

PP

 
 

2.12 In problem 13, if the maximum tensile in the plate and the maximum shear stress in the bolt 

is 6 ksi  and 25 ksi, determine the maximum load P that can be applied to the plate. 

 

2.13 The frame in the figure is loaded as shown. If the bolt at C has allowable shear stress of 20 

ksi, determine the required diameter of the bolt. Assume that the bolt is in single shear. 

 
 

 

2.14 A circular rod made of aluminum is 2 inches in diameter and 10 inches in length is 

subjected to an axial force of 25 kips. At the end of the tension test the rod length was 

measured to be 10.0025 inches and its diameter at the center decreased to 1.9415 inches. 

Determine the elastic constants for aluminum, namely Young’s modulus E, the Poisson’s 

ratio ν and Shear Modulus G. 

 

 

 


