# Engineering Design with SolidWorks 2011 

A Step-by-Step Project Based Approach Utilizing 3D Solid Modeling

Introductory Level • Tutorial Style $\bullet$ Video Instruction


David C. Planchard \& Marie P. Planchard, CSWP

## Project 4

## Extrude and Revolve Features



Below are the desired outcomes and usage competencies based on the completion of Project 4.

| Project Desired Outcomes: | Usage Competencies: |
| :--- | :--- |
| -Obtain your customer's <br> requirements for the <br> FLASHLIGHT assembly. | - Ability to incorporate Design Intent into |
| sketches, features, parts and assemblies. |  |

Notes:

## Project 4 - Extrude and Revolve Features

## Project Objective

Design a FLASHLIGHT assembly according to the customer's requirements. The FLASHLIGHT assembly will be cost effective, serviceable and flexible for future manufacturing revisions.

Design intent is the process in which the model is developed to accept future changes. Build design intent into the FLASHLIGHT sketches, features, parts and assemblies. Create two custom Part Templates. The Part Template is the foundation for the FLASHLIGHT parts.

Create the following parts:

- BATTERY
- BATTERYPLATE
- LENS
- BULB

The other parts for the FLASHLIGHT assembly are addressed in Project 5. Create the Core and Cavity mold tooling required for the BATTERYPLATE.

On the completion of this project, you will be able to:

- Apply design intent to sketches, features, parts, and assemblies.
- Select the best profile for a sketch.
- Select the proper Sketch plane.
- Create a template: English and Metric units.
- Set Document Properties.
- Customize the SolidWorks CommandManager toolbar.
- Insert/Edit dimensions.
- Insert/Edit relations.
- Use the following SolidWorks features:
- Instant3D
- Extruded Boss/Base
- Extruded Cut
- Revolved Boss/Base
- Revolved Boss Thin
- Revolved Cut Thin
- Dome
- Shell
- Circular Pattern
- Fillet
- Use the following Mold tools:
- Draft
- Scale
- Parting Lines
- Shut-off Surfaces
- Parting Surfaces
- Tooling Split


## Project Overview

Start the design of the FLASHLIGHT assembly according to the customer's requirements. The FLASHLIGHT assembly will be cost effective, serviceable and flexible for future manufacturing revisions.

A template is the foundation for a SolidWorks document. A template contains document settings for units, dimensioning standards and other properties. Create two part templates for the FLASHLIGHT Project:

- PART-IN-ANSI
- PART-MM-ISO

Create four parts for the FLASHLIGHT assembly in this Project:

- BATTERY
- BATTERYPLATE


FLASHLIGHT Assembly

- LENS
- BULB

Parts models consist of 3D features. Features are the building blocks of a part.
A 2D Sketch Plane is required to create an Extruded feature. Utilize the sketch geometry and sketch tools to create the following features:

- Extruded Boss/Base
- Extruded Cut

Utilize existing faces and edges to create the following features:

- Fillet
- Chamfer

This project introduces you to the Revolved feature. Create two parts for the FLASHLIGHT assembly in this section:
 centerline. Utilize sketch geometry and sketch tools to create the following features:

- Revolved Boss/Base
- Revolved Boss-Thin
- Revolved Cut

Utilize existing faces to create the following features:

- Shell
- Dome
- Hole Wizard

Utilize the Extruded Cut feature to create a Circular Pattern.


Circular pattern of V -shaped cuts.


Utilize the Mold tools to create the Cavity tooling plates for the BATTERYPLATE part.

## Design Intent

The SolidWorks definition of design intent is the process in which the model is developed to accept future changes.

Models behave differently when design changes occur. Design for change. Utilize geometry for symmetry, reuse common features and reuse common parts.

Build change into the following areas:


Isometric view Rotated Isometric view Mold Tools

1. Sketch
2. Feature
3. Part
4. Assembly
5. Drawing

See Project 8 (Intelligent modeling techniques)
for additional information.

## 1. Design Intent in the Sketch

In SolidWorks, relations between sketch entities and model geometry, in either 2D or 3D sketches, are an important means of building in design intent. In this chapter we will only address 2D sketches.

Apply design intent in a sketch as the profile is created. A profile is determined from the Sketch Entities. Example: Rectangle, Circle, Arc, Point, Slot etc.


Develop design intent as you sketch with Geometric relations. Sketch relations are geometric constraints between sketch entities or between a sketch entity and a plane, axis, edge, or vertex. Relations can be added automatically or manually.

A rectangle contains Horizontal, Vertical,
 and Perpendicular automatic Geometric relations. Apply design intent using added Geometric relations. Example: Horizontal, Vertical, Collinear, Perpendicular, Parallel, etc.

Example A: Apply design intent to create a square profile. Sketch a rectangle. Apply the Center Rectangle tool. Note: No construction reference centerline or Midpoint relation is required with the Center Rectangle
 tool. Insert dimensions to define the square.

Example B: Develop a rectangular profile. Apply the Corner Rectangle tool. The bottom horizontal midpoint of the rectangular profile is located at the Origin. Add a Midpoint relation between the horizontal edge of the rectangle and the Origin. Insert two dimensions to define the width and height of the rectangle as illustrated.

## 2. Design Intent in the Feature



Build design intent into a feature by addressing symmetry, feature selection, and the order of feature creation.

Example A: The Boss-Extrude1 feature (Base feature) remains symmetric about the Front Plane. Utilize the Mid Plane End Condition option in Direction 1. Modify the depth, and the feature remains symmetric about the Front Plane.

Example B: Do you create each tooth separate using the Extruded Cut feature? No. Create a single tooth and then apply the Circular Pattern feature. Create 34 teeth for a Circular Pattern feature. Modify the number of teeth from 32 to 24.

## 3. Design Intent in the Part

Utilize symmetry, feature order and reusing common features to build design intent into the part.

Example A: Feature order. Is the entire part symmetric? Feature order affects the part. Apply the Shell feature before the Fillet feature and the inside corners remain perpendicular.


## 4. Design Intent in the Assembly

Utilizing symmetry, reusing common parts and using the Mate relation between parts builds the design intent into an assembly.

Example A: Reuse geometry in an assembly. The assembly contains a linear pattern of holes. Insert one screw into the first hole. Utilize the Component Pattern
 feature to copy the machine screw to the other holes.

## 5. Design Intent in the Drawing

Utilize dimensions, tolerance and notes in parts and assemblies to build the design intent into the Drawing.

Example A: Tolerance and material in the drawing.

Insert an outside diameter tolerance $+.000 /-.002$ into the TUBE part. The tolerance propagates to the drawing.

Define the Custom Property
MATERIAL in the part. The
MATERIAL Custom Property propagates to the drawing.


## Project Situation

You work for a company that specializes in providing promotional tradeshow products. The company is expecting a sales order for 100,000 flashlights with a potential for 500,000 units next year. Prototype drawings of the flashlight are required in three weeks.

You are the design engineer responsible for the project. You contact the customer to discuss design options and product specifications. The customer informs you that the flashlights will be used in an international marketing promotional campaign.
Key customer requirements:

- Inexpensive reliable flashlight.
- Available advertising space of 10 square inches, 64.5 square centimeters.
- Lightweight semi indestructible body.
- Self standing with a handle.


Your company's standard product line does not address the above key customer requirements. The customer made it clear that there is no room for negotiation on the key product requirements.

You contact the salesperson and obtain additional information on the customer and product. This is a very valuable customer with a long history of last minute product changes. The job has high visibility with great future potential.

In a design review meeting, you present a
 conceptual sketch. Your colleagues review the sketch. The team's consensus is to proceed with the conceptual design.

The first key design decision is the battery. The battery type directly affects the flashlight body size, bulb intensity, case structure integrity, weight, manufacturing complexity and cost.


Review two potential battery options:

- A single 6-volt lantern battery
- Four 1.5 -volt D cell batteries

The two options affect the product design and specification. Think about it.
A single 6-volt lantern battery is approximately $25 \%$ higher in cost and $35 \%$ more in weight. The 6 -volt lantern battery does provide higher current capabilities and longer battery life.

A special battery holder is required to incorporate the four 1.5 volt D cell configuration. This would directly add to the cost and design time of the FLASHLIGHT assembly.

Time is critical. For the prototype, you decide to use a standard 6-volt lantern battery. This eliminates the requirement to design and procure a special battery holder. However, you envision the four D cell battery model for the next product revision.

Design the FLASHLIGHT assembly to accommodate both battery design options. Battery dimensional information is required for the design. Where do you go? Potential sources: product catalogs, company web sites, professional standards organizations, design handbooks and colleagues.

The team decides to purchase the following parts: 6-volt BATTERY, LENS ASSEMBLY, SWITCH and an O-RING. Model the following purchased parts: BATTERY, LENS assembly, SWITCH and the O-RING. The LENS assembly consists of the LENS and the BULB.

Your company will design, model and manufacture the following parts: BATTERYPLATE, LENSCAP and HOUSING.

| Purchased Parts: | Designed Parts: |
| :--- | :--- |
| BATTERY | BATTERYPLATE |
| LENS assembly | MOLD TOOLING |
| *SWITCH | *LENSCAP |
| *O-RING | *HOUSING |

*Parts addressed in Project 5.
The BATTERYPLATE, LENSCAP and HOUSING are plastic parts. Review the injection molded manufacturing process and the SolidWorks Mold tools. Modify the part features to eject the part from the mold. Create the MOLD TOOLING for the BATTERYPLATE.

## Part Template

Units are the measurement of physical quantities. Millimeter dimensioning and decimal inch dimensioning are the two most common unit types specified for engineering parts and drawings. The FLASHLIGHT project is designed in inch units and manufactured in millimeter units. Inch units are the primary unit and Millimeter units are the secondary unit.

Create two Part templates:

- PART-IN-ANSI
- PART-MM-ISO

Save the Part templates in the MY-TEMPLATES folder. System Options, File Locations option controls the file folder location of SolidWorks documents. Utilize the File Locations option to reference your Part templates in the MY-TEMPLATES folder. Add the MY-TEMPLATES folder path name to the Document Templates File Locations list.

## Activity: Create Two Part Templates

Create a PART-IN-ANSI Template.

1) Click New $\square$ from the Menu bar.
2) Double-click Part from the default Templates tab from the Menu bar.

Set the Dimensioning Standard to ANSI.
3) Click Options ${ }^{\text {B }}$, Document Properties tab.
4) Click the System Options tab.
5) Click Spin Box Increments. View the default settings.
6) Click inside the English units box.
7) Enter . 10in.
8) Click inside the Metric units box.

| External References |
| :--- | :--- |
| Default Templates |
| File Locations |
| FeatureManager |
| Spin Box Increments |
| View |




Set Document Properties.
10) Click the Document Properties tab.
11) Select ANSI from the Overall drafting standard drop-down menu.


Set the part units for inch.
12) Click Units.
13) Select IPS for Unit system.
14) Select .123 for Basic unit length decimal place.
15) Select millimeters for Dual dimension length unit.
16) Select .12 for Basic unit decimal place.
17) Select None for Basic unit angle decimal place.
18) Click OK from the Document Properties - Units dialog box.

Save and name the part template.
19) Click Save As from the Menu bar.
20) Select Part Templates (*.prtdot) from the Save As type box.

21) Select ENGDESIGN-W-SOLIDWORKS MY-TEMPLATES for the Save in folder.
22) Enter PART-IN-ANSI for File name.
23) Click Save.

Utilize the PART-IN-ANSI template to create the PART-MM-ISO template.
24) Click Options 㻥, Document Properties tab.
25) Select ISO from the Overall drafting standard drop-down menu.

Set the part units for millimeter.
26) Click Units.
27) Select MMGS for Unit system.
28) Select .12 for Basic unit length decimal place.
29) Select None for Basic unit angle decimal place.
30) Click OK from the Document Properties - Units dialog box.

Save and name the part template.
31) Click Save As from the Menu bar.
32) Select Part Templates (*.prtdot) from the Save As type box.
33) Select ENGDESIGN-W-SOLIDWORKS MY-TEMPLATES for the Save in folder.
34) Enter PART-MM-ISO for File name.
35) Click Save.

Set the System Options for File Locations to display in the New dialog box if needed.
36) Click Options from the Menu bar.
37) Click File Locations from the System Options tab.
38) Select Document Templates from Show folders for.
39) Click the Add button.
40) Select the MY-TEMPLATES folder.
41) Click OK from the Browse for Folder dialog box.
42) Click OK from the System Options dialog box.

Close all documents.
43) Click Windows, Close All from the Menu bar.


Each folder listed in the System Options, File Locations, Document Templates, Show Folders For option produces a corresponding tab in the New SolidWorks Document dialog box. The order in the Document Templates box corresponds to the tab order in the New dialog box.


The MY-TEMPLATES tab is visible when the folder contains SolidWorks Template documents. Create the PART-MM-ANSI template as an exercise.


To remove Tangent edges on a model, click Display/Selections from the Options menu, check the Removed box.

| RelationsiSnaps | $\square$ Allow selection in HLR and shaded |
| :---: | :---: |
| Displayifelection | $\square$ allow selection in HLR and shaded |
| Perform ke | Part/Assembly tangent edge display |
| Assemblies | As visible |
| External References | As phantom |
| Default Templates | - Removed |

The PART-IN-ANSI template contains Document Properties settings for the parts contained in the FLASHLIGHT assembly. Substitute the PART-MM-ISO or PART-MMANSI template to create the identical parts in millimeters.

The primary units in this Project are IPS, (inch, pound, seconds).

The optional secondary units are MMGS (millimeters, grams, second) and are indicated in brackets [ ].

Illustrations are provided in both inches and
 millimeters. Utilize inches, millimeters or both.

To set dual dimensions, select Options, Document Properties, Dimensions. Check the Dual dimensions display box as illustrated.

To set dual dimensions for an active document, check the Dual
 Dimension box in the Dimension PropertyManager.


Select Toolbars, Features in SolidWorks Help Topic to review the function of each tool in the Features toolbar.

Additional information on System Options, Document Properties, File Locations and Templates is found in SolidWorks Help. Keywords: Options (detailing, units), templates, Files (locations), menus and toolbars (features, sketch).


Review of the Part Templates
You created two Part templates: PART-MM-ANSI and PART-IN-ISO. Note: Other templates were created in the
 previous project. The Document Properties Dimensioning Standard, units and decimal places are stored in the Part Templates.

The File Locations System Option, Document Templates option controls the reference to the MY-TEMPLATES folder.

Note: In some network locations and school environments, the File Locations option must be set to MY-TEMPLATES for each session of SolidWorks.

You can exit SolidWorks at any time during this project. Save your document. Select File, Exit from the Menu bar.

## BATTERY Part

The BATTERY is a simplified representation of a purchased OEM part. Represent the battery terminals as cylindrical extrusions. The battery dimensions are obtained from the ANSI standard 908D.

A 6-Volt lantern battery weighs approximately 1.38 pounds, $(0.62 \mathrm{~kg})$. Locate the center of gravity closest to the center of the battery.

Create the BATTERY part. Use features to create parts. Features are building blocks that add or remove material.


Utilize the Instant3D tool to create the Extruded Boss/Base
feature vs. using the Boss-Extrude PropertyManager. The Extrude Boss/Base features add material. The Base feature (Boss-Extrude1) is the first feature of the part. Note: The default End Condition for Instant3D is Blind.

Apply symmetry. Use the Center Rectangle Sketch tool on the Top Plane. The 2D Sketch profile is centered at the Origin.


Extend the profile perpendicular ( $\perp$ ) to the Top Plane.

Utilize the Fillet feature to round the four vertical edges.


The Extruded Cut 回 feature removes material from the top face. Utilize the top face for the Sketch plane. Utilize the Offset Entity Sketch tool to create the profile.


Utilize the Fillet feature to round the top narrow face.


The Extruded Boss/Base 融 feature adds material. Conserve design time. Represent each of the terminals as a cylindrical Extruded Boss feature.


Think design intent. When do you use the various End Conditions and Geometric sketch relations? What are you trying to do with the design? How does the component fit into an Assembly?


## BATTERY Part-Extruded Boss/Base Feature

The Extruded Boss/Base feature requires:

- Sketch plane (Top)
- Sketch profile (Rectangle)
- Geometric relations and dimensions
- End Condition Depth (Blind) in Direction 1

Create a new part named, BATTERY. Insert an Extruded Boss/Base feature. Extruded features require a Sketch plane. The Sketch plane determines the orientation of the Extruded Base feature. The Sketch plane locates the Sketch profile on any plane or face.

The Top Plane is the Sketch plane. The Sketch profile is a
 rectangle. The rectangle consists of two horizontal lines and two vertical lines.

Geometric relations and dimensions constrain the sketch in 3D space. The Blind End Condition in Direction 1 requires a depth value to extrude the 2D Sketch profile and to complete the 3D feature.
$\qquad$ Alternate between the Features tab and the Sketch tab in the CommandManager to display the available Feature and Sketch tools for the Part document.


## Activity: BATTERY Part-Create the Extruded Base Feature

Create a New part.
44) Click New $\square$ from the Menu bar.
45) Click the MY-TEMPLATES tab.
46) Double-click PART-IN-ANSI, [PART-MM-ISO].


Save and name the empty part.
47) Click Save
48) Select PROJECTS for Save in folder.
49) Enter BATTERY for File name.
50) Enter BATTERY, 6-VOLT for Description.
51) Click Save. The Battery FeatureManager is displayed.

Select the Sketch plane.
52) Right-click Top Plane from the FeatureManager. This is your Sketch plane.

Sketch the 2D Sketch profile centered at the Origin.
53) Click Sketch from the Context toolbar. The Sketch toolbar
 is displayed.
54) Click the Center Rectangle Sketch tool. The Center Rectangle icon is displayed.
55) Click the Origin. This is your first point.
56) Drag and click the second point in the upper right quadrant as illustrated. The Origin is located in the center of the sketch profile. The Center Rectangle Sketch tool automatically applies
 equal relations to the two horizontal and two vertical lines. A midpoint relation is automatically applied to the Origin.


A goal of this book is to expose the new user to various tools, techniques and procedures. The text may not always use the most direct tool or process.

Click View, Sketch Relations from the Main menu to view sketch relations in the Graphics area.


Dimension the sketch.
57) Click the Smart Dimension Sketch tool.
58) Click the top horizontal line.
59) Click a position above the horizontal line.
60) Enter 2.700 in, [68.58] for width.
61) Click the Green Check mark in the Modify dialog box.
62) Enter 2.700 in, [68.58] for height as illustrated.

63) Click the Green Check mark in the Modify dialog box. The black Sketch status is fully defined.
64) Click OK from the Dimension PropertyManager.


Exit the Sketch.

## 65) Click Exit Sketch.

Insert an Extruded Boss/Base feature. Apply the Instant3D tool. The Instant3D tool provides the ability to drag geometry and dimension manipulator points to resize or to create features directly in the Graphics window.

Use the on-screen ruler.
66) Click Isometric view from the Heads-up View toolbar.
67) Click the front horizontal line as illustrated. A green arrow is displayed.

68) Click and drag the green/red arrow upward.
69) Click the on-screen ruler at 4.1 in , [104.14] as illustrated. This is the depth in direction 1. The extrude direction is upwards. Boss-Extrude1 is displayed in the FeatureManager.

Check the Boss-Extrude 1 feature depth dimension.
70) Right-click Boss-Extrude1 from the FeatureManager.
71) Click Edit Feature from the Context toolbar. 4.100in is displayed for depth. Blind is the default End Condition. Note: If you did not select the correct depth, input the depth in the Boss-Extrude1 PropertyManager.
72) Click OK from the Boss-Extrude1 PropertyManager.


Modify the Spin Box Increments in System Options to display different increments in the on-screen ruler.

Fit the part to the Graphics window.
73) Press the $f$ key.

Rename the Boss-Extrude1 feature.
74) Rename Boss-Extrude1 to Base Extrude.

Save the BATTERY.
75) Click Save

Modify the BATTERY.
76) Click Base Extrude from the FeatureManager. Note: Instant3D is activated by default.
77) Drag the manipulator point upward and click the onscreen ruler to create a 5.000in, [127] depth as illustrated. Blind is the default End Condition.

Return to the 4.100 depth.
78) Click the Undo ${ }^{5}$ button from the Menu bar. The depth of the model is 4.100in, [104.14]. Blind is the default End Condition. Practice may be needed to select the correct onscreen ruler dimension.


The color of the sketch indicates the sketch

status.

- Light Blue - Currently selected
- Blue - Under defined, requires additional geometric relations and dimensions
- Black - Fully defined
- Red - Over defined, requires geometric relations or dimensions to be deleted or redefined to solve the sketch

The Instant 3D tool is active by default in the Features toolbar located in the CommandManager.


## BATTERY Part-Fillet Feature Edge

Fillet features remove sharp edges. Utilize Hidden Lines Visible 7 from the Heads-up View toolbar to display hidden edges.

An edge Fillet feature requires:

- A selected edge
- Fillet radius

Select a vertical edge. Select the Fillet feature
 from the Features toolbar. Enter the Fillet radius. Add the other vertical edges to the Items To Fillet option.

The order of selection for the Fillet feature is not predetermined. Select edges to produce the correct result.

The Fillet feature uses the Fillet PropertyManager. The Fillet PropertyManager provides the ability to select either the Manual or FilletXpert tab.

Each tab has a separate menu and PropertyManager. The Fillet PropertyManager and FilletXpert PropertyManager displays the appropriate selections based on the type of fillet you create.


The FilletXpert automatically manages, organizes and reorders your fillets in the FeatureManager design tree. The FilletXpert PropertyManager provides the ability to add, change or corner fillets in your model. The PropertyManager remembers its last used state. View the SolidWorks tutorials for additional
 information on fillets.


The FilletXpert can ONLY create and edit Constant radius fillets.

## Activity: BATTERY Part-Fillet Feature Edge

Display the hidden edges.
79) Click Hidden Lines Visible from the Heads-up View toolbar.

Insert a Fillet feature.
80) Click the left front vertical edge as illustrated. Note the mouse pointer edge $\overline{s i} \|$ icon.
81) Click the Fillet feature tool. The Fillet PropertyManager is displayed.
82) Click the Manual tab. Edge $<1>$ is displayed in the Items To Fillet box.

83) Constant radius is the default Fillet Type. Click the remaining 3 vertical edges. The selected entities are displayed in the Items To Fillet box.
84) Enter . 500in, [12.7] for Radius. Accept the default settings.
85) Click OK from the Fillet PropertyManager. Fillet1 is displayed in the FeatureManager.
86) Click Isometric view from the Heads-up View toolbar.
87) Click Shaded With Edges from the Heads-up View toolbar.

Rename the feature.
88) Rename Fillet1 to Side Fillets in the FeatureManager.

Save the BATTERY.
89) Click Save


| 8 Fillet |  |
| :---: | :---: |
| - $\times$ |  |
| Manual | FilletXpert |
| Fillet Type |  |
| $\bigcirc \mathrm{Oc}$ | lant radius le radius illet und fillet |
| Items To Fillet |  |
| $\begin{aligned} & 7 \\ & 8 \end{aligned}$ | $\stackrel{\wedge}{*}$ |
|  |  |
|  | Tangent propagation |
|  | © Full preview |
|  | Partial preview |
|  | Ono preview |

## BATTERY Part-Extruded Cut Feature

An Extruded Cut feature removes material. An Extruded Cut feature requires:


- Sketch plane (Top face)
- Sketch profile (Offset Entities)
- End Condition depth (Blind) in Direction 1

The Offset Entity Sketch tool uses existing geometry, extracts an edge or face and locates the geometry on the current Sketch plane.

Offset the existing Top face for the 2D sketch. Utilize the default Blind End Condition in Direction 1.

## Activity: BATTERY Part-Extruded Cut Feature

Select the Sketch plane.
90) Right-click the Top face of the BATTERY in the Graphics window. Base Extruded is highlighted in the FeatureManager.

Create a sketch.
91) Click Sketch from the Context toolbar. The Sketch toolbar is displayed.

Display the face.
92) Click Top view ${ }^{3}$ from the Heads-up View toolbar.


Offset the existing geometry from the boundary of the Sketch plane.
93) Click the Offset Entities 7 Sketch tool. The Offset Entities PropertyManager is displayed.
94) Enter . 150in, [3.81] for the Offset Distance.
95) Click the Reverse box. The new Offset yellow profile displays inside the original profile.
96) Click OK from the Offset Entities PropertyManager.


- '8: A leading zero is displayed in the spin box. For inch dimensions less than 1 , the leading zero is not displayed in the part dimension in the ANSI standard.

Display the profile.
97) Click Isometric view from the Heads-up View toolbar.

98) Click Hidden Lines Removed from the Heads-up View toolbar.

Insert an Extruded Cut feature. As an exercise, use the Instant3D tool to create the Extruded Cut feature. In this section, the Extruded-Cut PropertyManager is used. Note: With the Instant3D tool, you may loose the design intent of the model.
99) Click the Extruded Cut 国 feature tool. The Cut-Extrude PropertyManager is displayed.
100) Enter . 200in, [5.08] for Depth in Direction 1. Accept the default settings.
101) Click OK from the Cut-Extrude
 PropertyManager. Cut-Extrude1 is displayed in the FeatureManager.

Rename the feature.
102) Rename Cut-Extrude1 to Top Cut in the FeatureManager.

Save the BATTERY
103) Click Save

The Cut-Extrude PropertyManager contains numerous options. The Reverse Direction option determines the direction of the Extrude. The Extruded Cut feature is valid only when the direction arrow points into material to be removed.


Cut direction not valid, no material to remove


The Flip side to cut option determines if the cut is to the inside or outside of the Sketch profile. The Flip side to cut arrow points outward. The Extruded Cut feature occurs on the outside of the BATTERY.



Extruded Cut with Flip side to cut option checked

## BATTERY Part-Fillet Feature

The Fillet feature tool rounds sharp edges with a constant radius by selecting a face.
A Fillet requires a:

- A selected face
- Fillet radius


## Activity: BATTERY Part-Fillet Feature Face

Insert a Fillet feature on the top face.
104) Click the top thin face as illustrated. Note: The face ts
icon feedback symbol.
105) Click the Fillet feature tool. The Fillet PropertyManager is displayed. Face<1> is displayed in the Items To Fillet box.
106) Click the Manual tab. Create a Constant radius for Fillet Type.

107) Enter .050in, [1.27] for Radius.
108) Click OK from the Fillet PropertyManager. Fillet2 is displayed in the FeatureManager.

Rename the feature.
109) Rename Fillet2 to Top Face Fillet.
110) Press the $f$ key.

Save the BATTERY.
111) Click Save


View the mouse pointer for feedback to select Edges or Faces for the fillet.

Do not select a fillet radius which is larger then the surrounding geometry.
Example: The top edge face width is .150 in, [3.81]. The fillet is created on both sides of the face. A common error is to enter a Fillet too large for the existing geometry. A minimum face width of .200 in , [5.08] is required for a fillet radius of .100in, [2.54].

The following error occurs when the fillet radius is too large for the existing geometry:


## BATTERY Part-Extruded Boss/Base Feature

The Extruded Boss feature requires a truncated cone shape to represent the geometry of the BATTERY terminals. The Draft Angle option creates the tapered shape.

Sketch the first circle on the Top face. Utilize the Ctrl key to copy the first circle.
The dimension between the center points is critical. Dimension the distance between the two center points with an aligned dimension. The dimension text toggles between linear and aligned. An aligned dimension is created when the dimension is positioned between the two circles.

An angular dimension is required between the Right Plane and the centerline. Acute angles are less than $90^{\circ}$. Acute angles are the preferred dimension standard. The overall BATTERY height is a critical dimension. The BATTERY height is 4.500 in, [114.3].

Calculate the depth of the extrusion: For inches: 4.500in - (4.100in Base-Extrude height -.200 in Offset cut depth) $=.600 \mathrm{in}$. The depth of the extrusion is .600 in .

For millimeters: 114.3 mm - (104.14mm Base-Extrude height - 5.08mm Offset cut depth $)=15.24 \mathrm{~mm}$. The depth of the extrusion is 15.24 mm .

## Activity: BATTERY Part-Extruded Boss Feature

Select the Sketch plane.
112) Right-click the Top face of the Top Cut feature in the Graphics window. This is your Sketch plane.

Create the sketch.
113) Click Sketch from the Context toolbar. The Sketch toolbar is displayed.
114) Click Top view from the Heads-up View toolbar.

Sketch the Close profile.
115) Click the Circle © Sketch tool. The Circle PropertyManager
 is displayed.
116) Click the centerpoint of the circle coincident to the Origin ${ }^{4}$.
117) Drag and click the mouse pointer to the right of the Origin as illustrated.

Add a dimension.
118) Click the Smart Dimension $*$ Sketch tool.
119) Click the circumference of the circle.

120) Click a position diagonally to the right.
121) Enter .500in, [12.7].
122) Click the Green Check mark in the Modify dialog box. The black sketch is fully defined.

Copy the sketched circle.
123) Right-click Select to de-select the Smart Dimension Sketch tool.
124) Hold the Ctrl key down.
125) Click and drag the circumference of the circle to the upper left quadrant as illustrated.
126) Release the mouse button.

127) Release the Ctrl key. The second circle is selected and is displayed in blue.

Add an Equal relation.
128) Hold the Ctrl key down.
129) Click the circumference of the first circle. The Properties PropertyManager is displayed. Both circles are selected and are displayed in green.
130) Release the Ctrl key.

131) Right-click Make Equal $=$ from the Context toolbar.
132) Click OK from the Properties PropertyManager. The second circle remains selected.

Show the Right Plane for the dimension reference.
133) Click Right Plane from the FeatureManager.


Add an aligned dimension.
135) Click the Smart Dimension $*$ Sketch tool.
136) Click the two center points of the two circles.
137) Click a position off the profile in the upper left corner.
138) Enter 1.000 in, [25.4] for the aligned dimension.
139) Click the Green Check mark in the Modify dialog box.

Insert a centerline.
140) Click the Centerline Sketch tool. The Insert Line PropertyManager is displayed.
141) Sketch a centerline between the two circle center points as illustrated.
142) Right-click Select to end the line.



- '
Press the Enter key to accept the value in the Modify dialog box. The Enter key replaces the Green Check mark.

Add an angular dimension.
143) Click the Smart Dimension $\leqslant^{*}$ Sketch tool. Click the centerline between the two circles.
144) Click the Right Plane (vertical line) in the Graphics window. Note: You can also click Right Plane in the FeatureManager.
145) Click a position between the centerline and the Right Plane, off the profile.
146) Enter 45. Click OK from the Dimension PropertyManager.

Fit the model to the Graphics window.
147) Press the $f$ key.

Hide the Right Plane.
148) Right-click Right Plane in the FeatureManager.
149) Click Hide from the Context toolbar. Click Save

Create an angular dimension between three points or two lines. Sketch a centerline/construction line when an additional point or line is required.

Insert an Extruded Boss feature.
150) Click Isometric view from the Heads-up View toolbar.
151) Click the Extruded Boss/Base feature tool. The BossExtrude PropertyManager is displayed. Blind is the default End Condition Type.
152) Enter $.600 \mathrm{in},[15.24]$ for Depth in Direction 1.
153) Click the Draft ON/OFF button.
154) Enter 5 deg in the Draft Angle box.
155) Click OK from the Boss-Extrude PropertyManager. The
 Boss-Extrude2 feature is displayed in the FeatureManager.

Rename the feature and sketch.
156) Rename Boss-Extrude 2 to Terminals.
157) Expand Terminals.
158) Rename Sketch3 to Sketch-TERMINALS.
159) Click Shaded With Edges from the Heads-up View toolbar.

## 160) Click Save

Each time you create a feature of the same feature type, the feature name is incremented by one. Example: Boss-Extrude1 is the first Extrude feature. Boss-Extrude2 is the second Extrude feature. If you delete a feature, rename a feature or exit a SolidWorks session, the feature numbers will vary from those illustrated in the text.


Rename your features with descriptive names. Standardize on feature names that are utilized in mating parts. Example: Mounting Holes.

Measure the overall BATTERY height.
161) Click Front view from the Heads-up View toolbar.
162) Click the Measure Measure tool from the Evaluate tab in the CommandManager. The Measure - BATTERY dialog box is displayed.
163) Click the top edge of the
 battery terminal as illustrated.
164) Click the bottom edge of the battery. The overall height, Delta $Y$ is 4.500 , [114.3]. Apply the Measure tool to ensure a proper design.
165) Close $\boldsymbol{X}$ the Measure - BATTERY dialog box.


The Measure tool provides the ability to display dual dimensions. Click Units/Precision from the Measure dialog box. Check the Use custom settings box. Select dual unit type. Select decimal places. Click OK.


The Selection Filter option toggles the Selection Filter toolbar. When Selection Filters are activated, the mouse pointer displays the Filter icon ${ }^{\Downarrow \pi}$. The Clear All Filters 房 tool removes the current Selection Filters. The Help icon displays the SolidWorks Online Users Guide.

Display the Trimetric view.
166) Click Trimetric view from the Heads-up View toolbar.

Save the BATTERY.
167) Click Save


a
Additional information on Extruded Boss/Base Extruded Cut and Fillets is located in SolidWorks Help Topics. Keywords: Extruded (Boss/Base, Cut), Fillet (Constant radius fillet), Geometric relations (sketch, equal, midpoint), Sketch (rectangle, circle), Offset Entities and Dimensions (angular).

Refer to the Help, SolidWorks Tutorials, Fillet exercise for additional information.


Review of the BATTERY Part
The BATTERY utilized a 2D Sketch profile located on the Top Plane. The 2D Sketch profile utilized the Center Rectangle Sketch tool. The Center Rectangle Sketch tool applied equal geometric relations to the two horizontal and two vertical lines. A midpoint relation was added to the Origin.

The Extruded Boss/Base feature was created using the Instant3D tool. Blind was the default End Condition. The Fillet feature rounded sharp edges. All four edges were selected to combine common geometry into the same Fillet feature. The Fillet feature also rounded the top face. The
 Sketch Offset Entity created the profile for the Extruded Cut feature.

The Terminals were created with an Extruded Boss feature. You sketched a circular profile and utilized the Ctrl key to copy the sketched geometry.

A centerline was required to locate the two holes with an angular dimension. The Draft Angle option tapered the Extruded Boss feature. All feature names were renamed.

