

CHATETI

Introduction To 3id Sheteb

3-D Sketch Advanced Topics

Using SolidWorks enables you to create 3D sketches. A 3D sketch
 consists of lines and arcs in series and splines. You can use a 3D sketch as a sweep path, as a guide curve for a loft or sweep, a centerline for a loft, or as one of the key entities in a piping system. Geometric relations can also be added to 3-D Sketches.

Parameters

- \times X Coordinate
${ }^{-} \quad$ Y Coordinate
z Z Coordinate

* Curvature (Spline curvature at the frame point)
(Tangency (In the XY plane)
Tangency (In the $\mathbf{X Z}$ plane)Tangency (In the $\mathbf{Y Z}$ plane)

Space Handle

When working in a 3D sketch, a graphical assistant is provided to help you maintain your orientation while you sketch on several planes. This assistant is called a space handle. The space handle appears when the first point of a line or spline is defined on a selected plane. Using the space handle, you can select the axis along which you want to sketch.

Introduction to 3D Sketch

Dimensioning Standards: ANSI Units: INCHES - 3 Decimals

Tools Needed:

30	3D Sketch	E	2D Sketch	V	Sketch Line
¢	Circle	*)	Dimension	ـ	Add Geometric Relations
+1	Sketch Fillet	Tab	Tab Key	C	Base/ Boss Sweep

1. Starting a new part file: Select File / New / Part / OK.

2. Using 3D Sketch:

- Click or select Insert / 3D Sketch, and change to Isometric view
- Select the Line tool \searrow and sketch the first line along the \mathbf{X} axis.

- Sketch the second line along the \mathbf{Y} axis as shown.
_ Inference lines

3. Changing direction:

- By default, your sketch is relative to the default coordinate system in the model.
- To switch to one of the other two default planes, press the TAB key. The reference origin of the current sketch plane is displayed.

4. Completing the profile:

- Follow the axis as labeled; press TAB if necessary to change the direction.

5. Adding dimensions:

- Click $\sqrt{\star}$ or select Tools / Dimensions / Smart Dimension.
- Click on the first line and add a dimension of $\mathbf{3 . 0 0 \prime}$.

- Continue adding the dimensions as shown, to fully define the 3D sketch.

6. Adding the Sketch Filets:

- Click \dagger or select Tools / Sketch Tools / Fillet.
- Add $\mathbf{. 5 0 0 "}$ fillets to all the intersections as indicated.
- Enable the Keep Constrained Corner check box.
- Click OK when finished.

- Exit the 3D Sketch or press Control + Q.

Relations

Geometric Relations such as Along Z and Equal can also be use to replace some of the duplicate dimensions.

Add Relations	^
$\underset{\sim}{x}$ Along X	
$\xrightarrow{\sim} \rightarrow$ Along Y	
$\xrightarrow[2]{2} \rightarrow$ AlongZ	
- Collinear	
\perp Perpendicular	
\ Parallel	
= Equal	
C Fix	

7. Sketching the Sweep Profile:

- Select the RIGHT plane from the FeatureManager tree.
- Click to open a new sketch or select Insert / Sketch.
- Sketch a Circle \dagger using the Origin as the center. (The system automatically creates a Coincident relation between the Center of the circle and the Origin.)

- Add a Ø. $\mathbf{2 5 0}$ dimension to fully define the circle.
- Exit the Sketch or select Insert / Sketch.

Note:

- The Sweep Profile should be Pierced or Coincident with the Sweep Path.
- The Swept Boss/Base command is only available when the sketch pencil is off.

8. Creating the Swept feature:

- Click or select Insert / Boss-Base / Sweep.
- Select the Circle as Sweep Profile \square (Sketch1)
- Select the 3D Sketch to use as Sweep Path $\mathscr{\sigma}$ (3Dsketch1).
- Click OK \circlearrowleft.

Options
Guide Curves
Start/End Tangency

9. Saving your work:

- Select File / Save As / 3D Sketch / Save.

1. When using 3D Sketch, you do not have to pre-select a plane as you would in 2D Sketch.
a. True
b. False
2. The space handle appears only after the first point of a line is started.
a. True
b. False
3. To switch to other planes in 3D Sketch mode, press:
a. Up Arrow
b. Down Arrow
c. TAB key
d. CONTROL key
4. Dimensions cannot be used in 3D Sketch mode.
a. True
b. False
5. Geometric Relations cannot be used in 3D Sketch mode.
a. True
b. False
6. All of the sketch tools in 2D Sketch are also available in 3D Sketch.
a. True
b. False
7. 3D Sketch entities can be used to extrude a solid feature.
a. True
b. False
8. 3D Sketch entities can be used as a path in a swept feature.
a. True
b. False

$\exists S 7 \forall J$ '9 $\quad \exists \mathrm{S} 7 \forall \mathrm{~J}^{\prime} \mathrm{G}$
ヨSTVコ' $\quad ~ \supset$ '

Exercise: Sweep with 3D Sketch

- Create the part shown using 3D Sketch.

Exercise: 3D Sketch \& Planes

A 3D sketch normally consists of lines and arcs in series, and splines. You can use a 3D sketch as a sweep path, as a guide curve for a loft or sweep, a centerline for a loft, or as one of the key entities in a routing system.

The following exercise demonstrates how several planes can be used to help define the directions of the 3D Sketch Entities.

1. Sketching the reference Pivot lines:

- Select the TOP plane and open a new sketch
- Sketch 2 Centerlines
 and add Dimensions as shown.

2. Creating the 1st 45° Planes:

- Select Insert/Reference Geometry/Planes
- Click the At Angle Option and enter 45 as Angle \bigsqcup.
- Select the TOP plane and the Vertical line as noted.

3. Creating the 2nd $\mathbf{4 5}^{\circ}$ Planes:

- Select Insert/Reference Geometry/Planes $\stackrel{\rightharpoonup}{*}$.
- Click the At Angle Option and enter 45 for Angle $\boxed{\square}$.
- Select the FRONT plane and the Horizontal line as noted.

- Click OK

- Select the PLANE2 (45 deg.) from the Feature Manager tree and Sketch the 2nd line along the \mathbf{Y} direction (watch the cursor feedback symbol).

- Add Sketch Fillets $\overline{+}$ of $\mathbf{5 0 0}$ in. to all corners.

Fillet Parameters $\hat{\lambda}$		
	0.500in	$\stackrel{1}{*}$
Keep constrained cornersDimension each fillet		

5. Creating a Perpendicular plane:

- Select Insert/Reference Geometry/Plane 芝.
- Click the Perpendicular option.
- Select the line and its endpoint approximately as shown.

6. Sketching the Sweep Profile:

- Select the new plane (Plane3) and open a new sketch
- Sketch 2 Circles \odot on the same center and add the dimensions as shown to fully define the sketch.

7. Sweeping the Profile along the 3D Path:

- Click C or Select Insert/Boss Base/Sweep
- Select the Circles as the Sweep Profile
- Select the 3D Sketch as the Sweep Path \mathscr{S}

- Click OK 。
- The resulting Swept feature.

- The planes are temporarily put away from the scene.

9. Saving your work:

- Click File/Save As:

3D-Sketch-Planes.

- Click Save.

Exercise: 3D Sketch \& Composite Curve

A 3D sketch normally consists of lines and arcs in series, and Splines. You can use a 3D sketch as a sweep path, as a guide curve for a loft or sweep, a centerline for a loft, or as one of the key entities in a routing system.

The following exercise demonstrates how several 3D Sketches can be created and combined into 1 continuous Composite Curve for use as a Sweep Path.

1. Creating a 2D sketch:

- Select TOP plane and
sketch a 1.00 in. Circle
 and 2 Centerlines \square

2. Creating a Helix:

- Select Insert/Curve/ Helix-Spiral

- Pitch: . 250 in.
- Revolution: 10
- Starting Angle: 0 deg.
- Click OK (v).

3. Creating the 1st 3D sketch:

- Select Insert/3D Sketch
- Select the Line command and sketch the $1^{\text {st }}$ line along the X direction.

On-Plane relation
(End point \& Right plane)

- Add other lines in their directions as shown.
- Add Dimensions to fully define the sketch.

- Add Sketch Fillets + + of $\mathbf{. 2 5 0}$ in. to all corners.
- Exit the 3D Sketch 안.

4. Creating the 2nd 3D sketch:

- Select Insert/3D Sketch 穊,
- Select the Line command \searrow and sketch the $1^{\text {st }}$ line along the X direction.
- Sketch the rest of the lines following their directions shown below.

5. Combining the $\mathbf{3}$ sketches into $\mathbf{1}$ curve:

- Select Insert/Curve/Composite $\sqrt{\square}$, or click the Curves button from the Feature toolbar.

- Select the 3 Sketches either from the Feature Manager tree - or - directly from the graphics area.

- Click OK
- The Sketches are now combined into 1 continuous curve, a Composite Curve.

6. Creating a new work plane:

- Select Insert/Reference Geometry/Plane

- Click the Perpendicular option and select the edge and the endpoint as noted.

- Click OK (

7. Sketching the Sweep Profile:

- Select the new plane (Plane1) and open a new sketch
- Sketch a Circle \dagger and add a . 165 dia. Dimension 4
- Add a Pierce relation between the center of the circle and the curve.
- Exit the Sketch E.

8. Sweeping the Profile along the Path:

- Select Insert/Boss Base/ Sweep $巳_{9}$.
- Select the Circle as the Sweep Profile \mathscr{E}.
- Select the Composite Curve as the Sweep Path \square

S Sweepi			
- x			
Profile and Path $\hat{\star}$			
(0) Sketch2			
C CompositeCurve1			
Options \approx			
Guide Curves \approx			
Start/End Tangency \approx			

- Click OK ()

9. Saving your work:

- Click File/Save As.
- Enter 3D Sketch Composite Curve
- Click Save.

