
®

Mike Spens

Automating SolidWorks
2013 Using Macros

 www.SDCpublications.com
Better Textbooks. Lower Prices.

A guide to creating VSTA
macros using the Visual
Basic.NET Language

SDC
P U B L I C A T I O N S

Visit the following websites to learn more about this book:

Powered by TCPDF (www.tcpdf.org)

http://www.sdcpublications.com/Textbooks/Automating-SolidWorks-2013-Using-Macros/ISBN/978-1-58503-773-5/
http://www.amazon.com/gp/product/1585037737?ie=UTF8&tag=sdcpublications&linkCode=as2&camp=211189&creative=374929&creativeASIN=1585037737
http://books.google.com/books?vid=ISBN1585037737&printsec=frontcover
http://www.barnesandnoble.com/s/1585037737?dref=1&keyword=1585037737
http://www.tcpdf.org

 75

Material Properties

 Basic Material Properties

 Adding Forms

 Arrays

 Working with Assemblies

 Selection Manager

 Verification and Error Handling

Material Properties

76

Introduction

This exercise is designed to go through the process of changing

settings for materials. It will also review several standard Visual

Basic.NET programming methods. It will also examine a method

for parsing through an assembly tree to change some or all of the

parts in the assembly.

As an additional preface to this chapter, remember that SolidWorks

sometimes does things better than your macros might. For

example, you can select multiple parts at the assembly level and set

their materials in one shot. You used to have to edit materials one

part at a time. This chapter was originally written before you

could set materials so easily. As a result, you should use this

chapter as a means to better understanding some of the tools

available through Visual Basic.NET and the SolidWorks API

rather than as a handy tool that SolidWorks does not provide

already in the software. No matter how clever you get with your

macros, at some point someone else might come up with the same

idea. In the perfect world, you should obsolete your macros as

SolidWorks adds the functionality to the core software.

Part 1: Basic Material Properties

The initial goal will be to make a tool that allows the user to select

a material from a pull-down list or combo box. When he clicks an

OK button, the macro should apply the appropriate material to the

active part. The user should be able to cancel the operation

without applying a material.

We could take the approach of recording the initial macro, but the

code for changing materials is simple enough that we will build it

from scratch in this example.

User Forms

Through the first chapters, two different methods for gathering

user input have been introduced. One method was the input box.

 Material Properties

 77

That is fine for simple text input. The other method was Microsoft

Excel. This improved things by adding command buttons and

multiple input values. Many times it is better to be able to

organize user input in a custom dialog box or form. This is a

standard with practically any Windows software. These allow

users to input text, click buttons to activate procedures, and select

options. After this example you will have created a form that

looks like the one shown using a drop down list or ComboBox and

two buttons.

1. Add a form to your macro by selecting Project, Add

Windows Form.

2. Choose the Dialog template and click Add.

A new form will be added to your project named Dialog1.vb and

will be opened for editing. The Dialog template has two Button

controls for OK and Cancel already pre-defined. In order to add

Material Properties

78

additional controls to the form you will need to access the controls

Toolbox from the left side of the VSTA interface. It is a collapsed

tab found immediately to the left of the newly created dialog form.

A ComboBox control must be added to the form.

3. Click on the Toolbox and optionally select the pushpin to

keep it visible as you build your form.

4. Drag and drop the ComboBox control from the Toolbox

onto your form.

After adding the ComboBox and resizing, your form should look

something like the following. An effective form is one that is

compact enough to not be intrusive while still being easy to read

and use.

Object Properties

Each of these controls has properties that you can change to affect

its visual display as well as its behavior. The properties panel is

visible on the right side of VSTA under the Project Explorer.

 Material Properties

 79

5. Select the OK button. The Properties window will show

all of the control’s properties. This is the same general idea

as the SolidWorks Property Manager.

6. Review the following properties that were defined by the

use of the Dialog template.

 Text = OK. This is the text that is visible to the user.

Use an ampersand (&) before a character to assign the

Alt-key shortcut for the control.

 (Name) = OK_Button. This name is what your code

must reference to respond to the button or to change its

properties while your macro is running.

7. Select the Cancel button and review its Text and Name

properties as well.

Material Properties

80

8. Select the dialog itself from the designer, not the Project

Explorer, and change its Text property to “Materials”.

9. Review the following properties of the dialog form that

were set by using the Dialog template.

 AcceptButton = OK_Button

 CancelButton = Cancel_Button

10. Select the ComboBox and set its Name to

“Materials_Combo”.

Show the Dialog

The macro needs a line of code that will display the form at the

right time. If you run the macro right now, it will not do anything

since the main procedure is empty.

11. Add the following code in your main procedure as follows.

Sub main()

 'Initialize the dialog

 Dim MyMaterials As New Dialog1

 Dim MyCombo As Windows.Forms.ComboBox

 MyCombo = MyMaterials.Materials_Combo

 'Set up materials list

 Dim MyProps(2) As String

 MyProps(0) = "Alloy Steel"

 MyProps(1) = "6061 Alloy"

 MyProps(2) = "ABS PC"

 MyCombo.Items.AddRange(MyProps)

 MyMaterials.ShowDialog()

End Sub

12. Run the macro as a test.

 Material Properties

 81

You should see your new dialog box show up. This is a result of

MyMaterials.ShowDialog() at the bottom of the code. Every user

form has a ShowDialog method that makes the form visible to the

user and returns the user’s action. We will make use of the return

value shortly.

If you click on the combo box, you should see Alloy Steel, 6061

Alloy and ABS PC listed.

13. Close the running macro and return to the VSTA interface.

There are a few steps required to make a form or dialog visible.

The first of which is to declare a variable named MyDialog as a

new instance of the Dialog1 class. Even though you have

created a dialog in the project, it is not created or used at run time

until you use it. It is important to note that the name of the class

does not always match the name of the file as it does in this

example.

14. Review the code behind Dialog1.vb by right-clicking on it

in the Project Explorer and selecting View Code.

Imports System.Windows.Forms

Public Class Dialog1

 Private Sub OK_Button_Click(ByVal sender …

 [Additional code here]

 End Sub

End Class

Material Properties

82

Notice that the code in the form itself is declared as a public class

named Dialog1. You could change the name of the class

without changing the name of the vb code file itself. In fact, a

single code file can contain as many classes as you want, although

it makes it a little more difficult to manage in the long run.

15. Switch back to the SolidWorksMacro.vb tab to return to

the main procedure.

The first time you use any class, whether it be a separate code

module or a dialog, you must typically use the New keyword

before you can reference it. This is distinctly different than Visual

Basic 6. It essentially created new instances of forms and dialogs

if you ever referenced them. It may seem that the .NET method of

referencing forms is a little more verbose, but it has some real

benefits as we will see a little further on.

Windows.Forms Namespace

A variable named MyCombo was also declared as

Windows.Forms.ComboBox and was set to the

Materials_Combo control from the instance of the form named

MyMaterials. This reference should make it apparent as to

what namespace or library a control comes from. The ComboBox

class is a child of the Forms namespace which is a child of the

Windows namespace. To add another level of complexity, the

Windows namespace is a member of the System namespace which

has already been referenced by the Imports statement at the top of

the code window. I personally still like to think of namespaces as

libraries. I am sure someone had a good reason for naming them

namespaces, but I still do not think I completely understand the

reason. If you think of a namespace as a library of classes, as I do,

it may be easier to think of what they are all about.

 Material Properties

 83

Since the macro will reference several components from the

Windows.Forms namespace, it will make the code less wordy to

import that namespace.

16. Add the following Imports statement to the top of the code

window to reference the necessary namespace. Notice that

this is the same imports statement as was used in the

Dialog1.vb code window.

Imports SolidWorks.Interop.sldworks

Imports SolidWorks.Interop.swconst

Imports System

Imports System.Windows.Forms

Now the declaration of MyCombo can be simplified as follows.

Dim MyCombo As ComboBox

Now that there is a reference to the ComboBox control, it is

populated with an array of values.

Arrays

An array is simply list of values. To declare an array you use the

form Dim variablename(x) As type.

MyProps(2) was declared as a string type variable. In other

words, you made room three rows of text in that one variable.

“Wait! I thought you declared two rows”! If you have not learned

this already, arrays count from zero. If you stick to this practice,

you will avoid confusion in most cases.

ComboBox.Items.AddRange Method

To populate the combo box with the array, you must tell the macro

where to put things. By typing

MyCombo.Items.AddRange(MyProps)you have told the

procedure that you want to populate the items (or list) of the

MyCombo control with the values in the MyProps array by using

Material Properties

84

the AddRange method. The ComboBox control automatically

creates a row for each row in the array. If you wanted to add items

one at a time rather than en masse, you could use the Add method

of the Items property.

DialogResult

Once a user has selected the desired material from the drop down,

this material should be applied to the active part if he/she clicks

OK. However, if the user clicks Cancel, we would expect the

macro to close without doing anything. At this point, either button

simply continues running the remaining code in the main

procedure – which is nothing.

17. Modify the main procedure as follows to add processing of

the DialogResult.

...

MyProps(0) = "Alloy Steel"

MyProps(1) = "6061 Alloy"

MyProps(2) = "ABS PC"

MyCombo.Items.AddRange(MyProps)

Dim Result As DialogResult

Result = MyMaterials.ShowDialog()

If Result = DialogResult.OK Then

 'Assign the material to the part

End If

End Sub

 Material Properties

 85

The ShowDialog method of a form will return a value from the

System.Windows.Forms.DialogResult enumeration. Since we

have used the Imports System.Windos.Forms statement

in this code window, the code can be simplified by declaring

Result as DialogResult. You probably noticed that when

you typed “If Result = “, IntelliSense immediately gave you the

logical choices for all typical dialog results.

As a result of the If statement, if the user chooses Cancel, the main

procedure will simply end.

Setting Part Materials

Now you will finally get your macro to do something with

SolidWorks. The next step will be to set the material based on the

material name chosen in the drop down.

18. Add the code inside the If statement to set material

properties as follows.

If Result = DialogResult.OK Then

 'Assign the material to the part

 Dim Part As PartDoc = Nothing

 Part = swApp.ActiveDoc

 Part.SetMaterialPropertyName2("Default", _

 "SolidWorks Materials.sldmat", MyCombo.Text)

End If

IPartDoc Interface

The first thing you might have noticed is the different way that Part

was declared. It was declared as PartDoc rather than

ModelDoc2 as was done in the previous macros. This part gets a

little more complicated to explain. Think of ModelDoc2 as a

container that can be used for general SolidWorks file references.

It can be a part, an assembly or a drawing. There are many

operations that are standard across all file types in SolidWorks

such as adding a sketch, printing and saving. However, there are

Material Properties

86

some operations that are specific to a file type. Material settings,

for example, are only applied at the part level. Mates are only

added at the assembly level. Views are only added to drawings.

Since we are accessing a function of a part, the PartDoc interface is

the appropriate reference. The challenging part is that the

ActiveDoc method returns a ModelDoc2 object which can be a

PartDoc, an AssemblyDoc or a DrawingDoc. They are somewhat

interchangeable. However, it is good practice to be explicit when

you are trying to call a function that is unique to the file type.

Being explicit also enables the correct IntelliSense information so

it is easier to code.

IPartDoc.SetMaterialPropertyName2 Method

The simplest way to set material property settings is using the

SolidWorks materials. SetMaterialPropertyName2 is a method of

the IPartDoc interface and sets the material by name based on

configuration and the specified database.

Dim instance As IPartDoc

Dim ConfigName As String

Dim Database As String

Dim Name As String

instance.SetMaterialPropertyName2(ConfigName, Database,

Name)

 ConfigName is the name of the configuration for which to

set the material properties. Pass the name of a specific

configuration as a string or use “” (an empty string) if you

wish to set the material for the active configuration.

 Database is the path to the material database to use, such

as SolidWorks Materials.sldmat. If you enter “” (an empty

string), it uses the default SolidWorks material library.

 Material Properties

 87

 Name is the name of the material as it displays in the

material library. If you misspell the material, it will not

apply any material.

At this point the macro is fully functional. Try it out on any part.

It will not work on assemblies at this point.

Part 2: Working with Assemblies

You can now extend the functionality of this macro to assemblies.

When completed, you will have a tool that allows the user to

assign material properties to selected components in an assembly.

After all, it is usually when trying to figure out the mass of an

assembly when you realize that you have forgotten to set the mass

properties for your parts.

Is the Active Document an Assembly?

To make this code universal for parts or assemblies, we need to

filter what needs to happen. If the active document is an assembly,

we need to do something to the selected components. If it is a part,

we simply run the code we already have.

19. Add the following If statement structure to check the type

of active document. The previous material settings are now

inside this If statement (not bold).

If Result = DialogResult.OK Then

 Dim Model As ModelDoc2 = swApp.ActiveDoc

 If Model.GetType = swDocumentTypes_e.swDocPART Then

 'Assign the material to the part

 Dim Part As PartDoc = Model

 'Part = swApp.ActiveDoc

 Part.SetMaterialPropertyName2("Default", _

 "SolidWorks Materials.sldmat", MyCombo.Text)

 ElseIf Model.GetType = swDocumentTypes_e._

 swDocASSEMBLY Then

 Dim Assy As AssemblyDoc = Model

 'set materials on selected components

 End If

Material Properties

88

End If

It is important to pay attention to the interchange between

ModelDoc2, PartDoc and AssemblyDoc. Notice the simplification

of the declaration of Model. Rather than initializing the variable

to Nothing as was done in previous examples, it is initialized

directly to swApp.ActiveDoc. This is simply a shorthand way

to accomplish a declaration and the variable’s initial value. When

Part and Assy are declared, they are initialized to Model which

is still a reference to the active document. However, since they are

declared explicitly as PartDoc and AssemblyDoc, they inherit the

document type specific capabilities of parts and assemblies.

Also, notice the use of the ModelDoc.GetType method. GetType

is used to return the type of ModelDoc that is currently active.

This test is important before attempting to deal with specific

PartDoc and AssemblyDoc methods. For example, if you use the

general ModelDoc2 declaration and attach to the active document,

and it is a part, any attempt to call an assembly API like AddMate

will cause an exception or crash. There is an enumeration, named

swDocumentTypes_e, of document types that you have used

when testing GetType. When you typed in the code, you should

have noticed the different document types show up in the

IntelliSense pop-up.

Selection Manager

In the Model Parameters exercise we discussed selections using the

SelectByID2 method. However, the code had to be specific to the

item being selected. We had to pass the name of the component or

a selection location. To get around those limitations you can

 Material Properties

 89

employ a method that is similar to several functions in

SolidWorks. You can require the user to pre-select the

components he wishes to change prior to running the macro. The

only trick is to program your macro to change the settings for each

item the user selects. The selection manager interface will be the

key tool for this part of the macro.

ISelectionMgr Interface

Connecting to the selection manager is similar to getting the

PartDoc interface (called Part). The selection manager is a child

of the ModelDoc2 interface.

20. Add the following code inside the assembly section of the

If statement to declare the selection manager and to attach

to it.

ElseIf Model.GetType = swDocumentTypes_e.Then Then

 Dim Assy As AssemblyDoc = Model

 'set materials on selected components

 Dim SelMgr As SelectionMgr

 SelMgr = Model.SelectionManager

End If

...

Some of the things you can access from the selection manager

interface are the selected object count, type, or even the xyz point

where the object was selected in space. In this macro you will

need to access the selected object count or number of items

selected, and get access to the components that were selected.

Remember that components in SolidWorks can be either parts or

assemblies. Since we can only set density for parts, we will need

to make sure the item selected is a part. For each item in the

selection manager, you must get the ModelDoc2 interface and then

set its material settings. You cannot set material settings at the

component level in the API.

Material Properties

90

21. Add the following code to set the material to all selected

components.

ElseIf Model.GetType = swDocumentTypes_e.swDocASSEMBLY Then

 Dim Assy As AssemblyDoc = Model

 'set materials on selected components

 Dim SelMgr As SelectionMgr

 SelMgr = Model.SelectionManager

 Dim Comp As Component2

 Dim compModel As ModelDoc2

 For i As Integer = 1 To _

 SelMgr.GetSelectedObjectCount2(-1)

 Comp = SelMgr.GetSelectedObjectsComponent3(i, -1)

 compModel = Comp.GetModelDoc2

 If compModel.GetType = swDocumentTypes_e.swDocPART Then

compModel.SetMaterialPropertyName2("Default", _

"SolidWorks Materials.sldmat", MyCombo.Text)

 End If

 Next

End If

...

For … Next Statements and Loops

As was mentioned earlier, you want to set the material properties

for each part that was selected by the user. What if the user has

selected 500 parts? You certainly do not want to write 500 lines of

code for each item selected. In many cases you will want to apply

the same action to a variable number of items.

For … Next statements allow you to repeat a section of code over

as many iterations as you want. Computers are great at this! You

just have to know how many times to loop through the code if you

use a For … Next statement.

For I As Integer = 0 To 10

 MsgBox("You have clicked OK " & I & " times!")

Next I

 Material Properties

 91

Add this sample code to a procedure and then run the procedure.

You get a MessageBox stating exactly how many times you have

clicked OK. That is great if you know exactly how many times the

loop needs to process. In the macro, you do not know how many

times to repeat the loop because you do not know how many parts

the user might select. So you can make the procedure figure it out

for you. You can use the SelectionManager object to help.

ISelectionMgr.GetSelectedObjectCount2

You need to determine how many times to run through the loop.

This should correspond to the number of items selected. This

number can be extracted from the selection manager through its

GetSelectedObjectCount2 method. The argument passed is

related to a selection Mark. A value of -1 indicates all selections

will be counted, regardless of Mark. See the API Help for more

information on marks.

For i = 1 To SelMgr.GetSelectedObjectCount2(-1)

 ‘(loop code here)

Next i

The For loop starts with an initial value of 1 so that it will only

loop if the number of selected items is greater than zero.

GetSelectedObjectsComponent3

The next thing you need to do is get the ModelDoc2 object for

each of the selected items. You will need this object so you can set

its material properties. This requires a two-step process. The first

Material Properties

92

thing you need to access will be the Component object. To get the

component object you use the selection manager’s

GetSelectedObjectsComponent3(item number, Mark) method.

The Mark argument is again -1 to get the component regardless of

selection Mark. You must use the Component interface to access

its underlying ModelDoc2 interface. Notice the declarations for

compModel and Comp. They are specific to the type of

SolidWorks object we are accessing.

GetModelDoc2

The Component.GetModelDoc2 method allows you to access the

underlying ModelDoc interface of the component.

Now that you have the model, you can use the same code from the

part section to set the material properties.

Component vs. ModelDoc

If you have been wondering why we have to take the extra time to

dig down to the ModelDoc2 interface of the Component interface,

this discussion is for you. If you have not and it all makes perfect

sense, move on to the next subject.

Think of it this way – a Component interface understands specific

information about the ModelDoc2 it contains. It knows which

configuration is showing, which instance it is, if it is hidden or

suppressed and even the component’s rotational and translational

position in the assembly. These are all things that can be changed

in the Component interface. However, if you want to change

something specific to the underlying part such as its material

density, or to the underlying assembly such as its custom

properties, then you must take the extra step of getting to the actual

ModelDoc2 interface.

 Material Properties

 93

Verification and Error Handling

At times you may want to check the user’s interactions to make

sure they have done what you expected. After all, your macro may

not have a user’s guide. And even if it does, how many people

really read that stuff? If you’re reading this, you probably would.

What about the other 90% of the population?

You can make sure the user is doing what you think they should.

First, define some criteria.

 Is the user in an assembly? The user must be in an

assembly to use the GetSelectedObjectsComponent3

method.

 If the active document is an assembly, has the user pre-

selected at least one part? If not, they will think they are

applying material properties while nothing happens.

 Has the user selected items other than parts? If they select

a plane, the macro may generate an exception or crash

because there is no ModelDoc2 interface.

 Does the user even have a file open in SolidWorks?

The only conditions we have not yet added error handling for are

the number of selections and if there is an active document.

21. Add the following to check for an active document.

Dim Model As ModelDoc2 = swApp.ActiveDoc

If Model Is Nothing Then

 MsgBox("You must first open a file.", _

 MsgBoxStyle.Exclamation)

 Exit Sub

End If

Material Properties

94

22. Add the following to verify that the user has selected

something in an assembly.

...

If SelMgr.GetSelectedObjectCount2(-1) < 1 Then

 MsgBox("You must select at least one component.", _

 MsgBoxStyle.Exclamation)

 Exit Sub

End If

For i As Integer = 1 To SelMgr.GetSelectedObjectCount2(-1)

 Comp = SelMgr.GetSelectedObjectsComponent3(i, -1)

…

If … Then…Else Statements

If the active document is an assembly, you should check if the user

has selected at least one component before continuing. Checking

the GetSelectedObjectCount2 method of the selection manager for

a value less than one will accomplish this. If it is less than one the

user has failed to select anything.

MessageBox

You can make use of the Visual Basic MessageBox function to

give the user feedback. The MessageBox function allows you to

tell the user anything in a small dialog box. This dialog box has an

OK button by default, but it can have Yes and No buttons, OK and

Cancel, or other combinations. If you use anything besides the

default you can use the return value to determine which button the

user selected.

The macro will now provide feedback to the user to make sure they

are using the macro correctly. It makes good programming sense

to build good error handling into your macros. Users tend to

quickly get frustrated when a tool crashes or generates undesired

results.

Conclusion

 Material Properties

 95

Even though this tool itself is redundant to SolidWorks

capabilities, this procedure can easily be extended to changing or

listing any setting related to a model or parts in an assembly.

	978-1-58503-773-5_Cover
	pdf-link-bar-generator
	978-1-58503-773-5
	Blank Page

