## SolidWorks<sup>2014</sup> Part II - Advanced Techniques

Parts, Surfaces, Sheet Metal, SimulationXpress, Top-Down Assemblies, Core and Cavity Molds



Paul Tran CSWE, CSWI



Better Textbooks. Lower Prices. www.SDCpublications.com

#### Visit the following websites to learn more about this book:





## Introduction To 3D Sketch

| Introduction to 3D Sketch 🖉                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Using SolidWorks enables you to create 3D sketches. A 3D-<br>sketch consists of lines and arcs in series and splines. You can use a 3D sketch as<br>a sweep path, as a guide curve for a loft or sweep, a centerline for a loft, or as one<br>of the key entities in a piping system. Geometric relations can also be added to<br>3D Sketches. |
| Parameters                                                                                                                                                                                                                                                                                                                                     |
| X Coordinate                                                                                                                                                                                                                                                                                                                                   |
| Y Coordinate                                                                                                                                                                                                                                                                                                                                   |
| Z Coordinate                                                                                                                                                                                                                                                                                                                                   |
| Curvature (Spline curvature at the frame point)                                                                                                                                                                                                                                                                                                |
| Tangency (In the XY plane)                                                                                                                                                                                                                                                                                                                     |
| Tangency (In the XZ plane)                                                                                                                                                                                                                                                                                                                     |
| Tangency (In the YZ plane)                                                                                                                                                                                                                                                                                                                     |
| When working in a 3D sketch, a graphical assistant is provided to help you maintain                                                                                                                                                                                                                                                            |

When working in a 3D sketch, a graphical assistant is provided to help you maintain your orientation while you sketch on several planes. This assistant is called a *space handle*. The space handle appears when the first point of a line or spline is defined on a selected plane. Using the space handle you can select the axis along which you want to sketch.

### **Introduction to 3D Sketch**



1. Starting a new part file: Select File / New / Part / OK.



#### 2. Using 3D Sketch:



- Select the Line tool  $\square$  and sketch the first line along the X axis.



#### 3. Changing direction:

- By default your sketch is relative to the default coordinate system in the model.
- To switch to one of the other two default planes, press the **TAB** key and the reference origin of the current sketch plane is displayed on that plane.



#### 4. Completing the profile:



#### **5. Adding dimensions:**

- Click or select Tools / Dimensions / Smart Dimension.
- Click on the first line and add a dimension of **3.00**".







Modify D18@3DSketch1 3.000in

🗸 🗙 🔋 ±? 📎

3.000

- Re-arrange the dimensions so they are easy to read, which makes editing a little easier.

#### 6. Adding the Sketch Fillets:

- Click i or select Tools / Sketch Tools / Fillet.
- Add .500" fillets to <u>all</u> the intersections as indicated.
- Enable the **Keep Constrained Corner** check box (Maintains the virtual intersection point if the vertex has dimensions or relations).
- Click **OK** when finished.



#### 7. Sketching the Sweep Profile:

- Select the <u>Right</u> plane from the FeatureManager tree.
- Click *log to open a new 2D sketch or select* **Insert** / **Sketch**.
- Sketch a Circle 🕑 using the Origin as the center. (The system automatically creates a Coincident relation between the Center of the circle and the Origin.)



- <u>Exit</u> the Sketch **C** or select **Insert** / **Sketch**.

#### <u>Note</u>:

- The Sweep Profile should be Pierced or Coincident with the Sweep Path.
- The Swept Boss/Base command is only available when the sketch pencil is off.

#### 8. Creating the Swept feature:

- Click G or select Insert / Boss-Base / Sweep.
- Select the Circle as Sweep Profile (Sketch1).
- Select the 3D Sketch to use as Sweep Path (3Dsketch1).
- Click OK 🖉.



#### 9. Saving your work:

- Select File / Save As / 3D Sketch / Save.





## Introduction to 3D Sketch

- 1. When using 3D Sketch you do not have to pre-select a plane as you would in 2D Sketch.
  - a. True
  - b. False
- 2. The space handle appears only after the first point of a line is started.
  - a. True
  - b. False
- 3. To switch to other planes in 3D Sketch mode, press:
  - a. Up Arrow
  - b. Down Arrow
  - c. TAB key
  - d. CONTROL key
- 4. Dimensions cannot be used in 3D Sketch mode.
  - a. True
  - b. False
- 5. Geometric Relations cannot be used in 3D Sketch mode.
  - a. True
  - b. False
- 6. All sketch tools in 2D Sketch are also available in 3D Sketch.
  - a. True
  - b. False
- 7. When adding sketch fillets, the option Keep Constrained Corner will create a virtual intersection point, but will not create a dimension.
  - a. True
  - b. False
- 8. 3D Sketch entities can be used as a path in a swept feature.

| a. | True  |          |          |
|----|-------|----------|----------|
| b. | False | 8. TRUE  | 7. FALSE |
|    |       | 6. FALSE | 5. FALSE |
|    |       | 4. FALSE | 3' C     |
|    |       | 2. TRUE  | 1. TRUE  |

#### **Exercise:** Sweep with 3D Sketch

1. Create the part shown using 3D Sketch.



#### **Exercise: 3D Sketch & Planes**

. 4.000

A 3D sketch normally consists of lines and arcs in series, and splines. You can use a 3D sketch as a sweep path, as a guide curve for a loft or sweep, a centerline for a loft, or as one of the key entities in a routing system.

The following exercise demonstrates how several planes can be used to help define the directions of 3D Sketch Entities.

#### 1. Sketching the reference Pivot lines:

- Select the <u>Top</u> plane and

open a new sketch 🚩

- Sketch 2 Centerlines

and add Dimensions 🧭 as shown.

#### 2. Creating the 1st 45° Plane:

- Select Insert/Reference Geometry/Planes 🔯
- Click the At Angle option and enter 45 for Angle
- Select the **top** plane and the **vertical line** as noted.





#### **3. Creating the 2nd 45° Plane:**

- Select Insert/Reference Geometry/Planes 🔯 .
- Click the At Angle option and enter 45 for Angle
- Select the **front** plane and the **horizontal line** as noted.



- Select the **Plane2** (45 deg.) from the Feature Manager tree and Sketch the 2<sup>nd</sup> line along the **Y** direction (watch the cursor feedback symbol).



- For clarity, hide all the planes (select the **View** menu and click off **Planes**). We will select the planes from the FeatureManager tree when needed.





#### SolidWorks 2014 | Advanced Techniques | Introduction to 3D Sketch



- Select the line and its endpoint approximately as shown.
- The **Perpendicular** option should be selected by default.





- The resulting Swept feature.

# Plane3 8. Hiding the Planes: - From the menu, select View/Planes. Plane2 - The planes are temporarily put away from the scene.

#### 9. Saving your work:

- Click File/Save As: 3D Sketch\_Planes.
- Click Save.

L

#### **Exercise: 3D Sketch & Composite Curve**



A 3D sketch normally consists of lines and arcs in series and Splines. You can use a 3D sketch as a sweep path, as a guide curve for a loft or sweep, a centerline for a loft, or as one of the key entities in a routing system.

The following exercise demonstrates how several 3D Sketches can be created, combined into 1 continuous Composite Curve, and used as a Sweep Path.

Ø1.000-

#### 1. Creating a 2D sketch:

- Select <u>Top</u> plane and sketch

a 1.00" dia. Circle 🕑

and 2 Centerlines

#### 2. Creating a Helix:

- Select Insert/Curve/

Helix-Spiral 🜔 .

- Pitch: .250 in.
- Revolution: 10.
- Starting Angle: 0 deg.
- Click OK 🕢.

| 8                        | er 🖪 🕁 🙆             |   |
|--------------------------|----------------------|---|
| BH                       | elix/Spiral          | ? |
| <ul> <li>&gt;</li> </ul> | ٢                    |   |
| Defined By:              |                      |   |
|                          | Pitch and Revolution | - |
| Para                     | meters               | * |
|                          | Constant Pitch       |   |
|                          | O Variable Pitch     |   |
|                          | Pitch:               |   |
|                          | 0.250in              |   |
|                          | Reverse direction    |   |
|                          | Revolutions:         |   |
|                          | 10                   |   |
|                          | Start angle:         |   |
|                          | 0.00deg              |   |
|                          | Clockwise            |   |
|                          | C Counterclockwise   |   |
| Пт                       | aper Helix           | ~ |
| 1                        | 0.00deg              |   |
|                          | Taper outward        |   |

#### **3. Creating the 1st 3D sketch:**



#### 4. Creating the 2nd 3D sketch:

- Select Insert/3D Sketch 🜌
- Select the Line command  $\square$  and sketch the 1<sup>st</sup> line along the X direction.
- Sketch the rest of the lines following their direction shown below.



#### 5. Combining the 3 sketches into 1 curve:

- Select Insert/Curve/Composite if or select it from the Curves button on the Features toolbar.



- Select the 3 Sketches either from the Feature Manager tree or directly from the graphics area.



#### 6. Creating a new work plane:

- Select Insert/Reference Geometry/Plane



- Select the edge and endpoint as noted, the Perpendicular should be selected.



Path(CompCurve4)

#### 8. Sweeping the Profile along the Path:

Select Insert/Boss Base/ Sweep .
Select the Circle as the Sweep Profile .
Select the Composite Curve as the Sweep Path .

| S 🖻 😫 🔶 🧶                      |   |  |  |  |  |
|--------------------------------|---|--|--|--|--|
| Sweep1 ?                       |   |  |  |  |  |
| ✓ ×                            |   |  |  |  |  |
| Profile and Path               | ~ |  |  |  |  |
| Sketch2                        |   |  |  |  |  |
| C <sup>0</sup> CompositeCurve1 |   |  |  |  |  |
| Options                        | * |  |  |  |  |
| Guide Curves                   | * |  |  |  |  |
| Start/End Tangency             | * |  |  |  |  |

- Click OK 🕢.



Profile(Sketch7)

#### 9. Saving your work:

- Click File/Save As.
- Enter **3D Sketch\_** Composite Curve.
- Click Save.

#### SolidWorks 2014 | Advanced Techniques | Introduction to 3D Sketch

