CSWE
 Certified SolidWorks Expert Preparation Materials SolidWorks 2010-2015

Paul Tran CSWE, CSWI

Visit the following websites to learn more about this book:

StPC	amazon.com	Google books	baRnes NOBLE

CHAPTER 1

Surface Modifications

CSWE Exam Preparation Surface Modifications Summary

When working with imported parts, whether the
 imported model is a solid model or a surface model, we will have to deal with one major disadvantage, and that is not having the features history available for modifications.

The SolidWorks software offers a few tools for manipulating the geometry of the imported model such as surface move, rotate, copy, delete, etc. When used together with the surface commands, much more can be achieved.

When a surface model has a number of faces that consists of a closed volume, it can be converted into a solid model. However if the surface model is opened, it can only be made into a thin walled part.

Solid Model

Surface Model

Opened $=$ Surface Model

This lesson focuses on the techniques that are used in the CSWE exam, where the solid model will be converted into a surface model, and the handle will be rotated into the upright position. The deleted faces will be patched up and knitted to the entire model and then become one closed volume. The volume will then get converted back to a solid model.

CSWE Exam Preparation Surface Modifications

Dimensioning Standards: ANSI
Units: INCHES - 3 Decimals

Tools Needed:

Temporary Axis
Move / Copy
Delete Surface

Loft Surface

Trim Surface

Knit Surface

1. Opening a part document:

- Click File / Open.
- Browse to the Training Files folder and open the part document named:
Steel Handle.
- This model was created as
 a solid, but the approach that we are about to take will convert it to a surface model.
- The sample images below show the cross sections of the model, before and after the Delete Face operation.

2. Deleting the faces of the model:

- Right click on one of the 2 faces as indicated below and select the Delete option below the Face selection.

Solid model

- The Delete Face options appear on the Properties tree.
- Click the Delete option and select the 2 faces as noted.
- Click OK. The 2 selected faces are removed and the Solid model changes to a Surface model.

Surface model

- Rotate and zoom closer to examine the result.

Left end

Right end

- Because the solid model has changed to a surface model, there is no mass in it, and the Mass Properties command is grayed out at the moment.
- The intention is to separate the handle from the base, so that it can be rotated to the upright position. The 2 deleted faces will get recreated and knitted with the surface model to form one closed volume and then thicken into a solid.

3. Measuring the current angle:

- Change to the Right orientation (Control + 4), and enable the TemporaryAxis from the View pull down menu.
- Switch to the Evaluate tool tab and select the Measure command.
- Measure the angle between the Right plane and the center axis of the handle.

- The angle is $\mathbf{3 0}^{\circ}$. Exit the Measure command.

4. Rotating the handle:

- Select the Move/Copy command (arrow) from the Insert / Features pull down menus.
- At the bottom of the Properties tree, click the Translate/Rotate button (arrow).
- Under the Bodies to Move / Copy selection

 box, select the Handle from the Surface Bodies folder (arrow).
- Expand the Rotate selection box and select the Axis as indicated below.
- Enter 30deg for angle.

- Click OK.

5. Recreating the deleted surfaces:

- Now that the handle is rotated to the upright position, we can fill in the gaps between the handle and the base. One of the commands to do that with is the Surface Loft command.
- Switch to the Surfaces tool tab and select the Lofted Surface command.

- Under the Profile selection box, select the 2 curve edges as indicated below (more settings on next page).

- Click inside the Guide Curves selection box to activate this option.
- Select the 2 linear edges on both sides, as noted, to use as guide curves.

- Under the Options selection box, enable the checkbox Merge Tangent Faces.

- Also enable the Show Preview checkbox.
- The yellow preview indicates that the surface loft is being created successfully.
- Click OK to accept and exit the Surface Loft command.
- Repeat step 5 and create another Lofted-Surface to fill the opening on the other end of the handle.
- Create a section view using the Right plane. Verify that all gaps have been filled at this point.
- There are 2 surfaces under the handle that need to be
 trimmed, and it is quite difficult to see clearly where they are. So we are going to hide the base, and work with the handle only.

6. Hiding a surface body:

- One of the major advantages in working with multibody parts is the ability to hide or show any of the bodies at any time, and a new feature can be added to the selected body without affecting the others.
- The bodies can be selected directly from the graphics area or from the Surface Bodies folder, listed on the FeatureManager tree.
- Click anywhere on the base and select the Hide command $\infty 0$ (arrow).

7. Trimming surfaces:

- Rotate the view and locate the 2 surfaces under the handle as noted.
- Click the Trim Surface command from the Surfaces tool tab.

- Under the Trim Type selection box, click the Mutual option.
- Under TrimmingSurfaces, select the 2 trim surfaces and the Handle.

- Click the RemoveSelections option and select the 2 faces again.

- Click OK to exit the Trim Surface.

8. Showing a surface body:

- After the trim, we need to make the base body visible for the next step.
- Right click the Base body (DeleteFace1) and select Show ∞.

- The base body appears. We can now knit the base body to the other surface bodies, so that they can become 1 closed volume.

9. Knitting all surface bodies:

- Click the Knit Surface command from the Surfaces tool tab.
- Select all surface bodies either from the graphics area or from the Feature tree.
- Enable the Try To Form Solid checkbox.
- Click OK.
- The surface model is converted back to a solid model.

10. Creating a section view:

- Select the Right plane from the FeatureManager tree.
- Click the Section View command on the View Heads Up toolbar.
- Verify that the part is now a solid model.
- Click Cancel to exit the section view command.

11. Measuring the mass:

- Change the material to Chrome Stainless Steel.
- Click the Mass Properties command from the Evaluate tool tab.
- Using 3 decimal places, enter the final mass of the model here: \qquad .

- Save the document as Surface Modifications Completed and close all documents.

Exercise: Surface Modifications

1. Opening a part document:

- Click File / Open.
- Browse to the Training Files folder and open the part document named: Surface Modifications_Exe.
- This part was created as a
 solid model, and was saved under a format other than SolidWorks, therefore no feature history will be available for editing.
- This exercise will show us one of the techniques to work with these types of models.

2. Converting to surface model:

- By removing one of the faces of the solid model, it will be transformed into a surface model instantly.
- Right click the face as noted, select the Delete option in the Face section.

- In the Options section select the Delete option.
- Click OK.

- The selected face is removed and the part changes into a surface model. This model has 2 surface bodies.

3. Rotating a surface body:

- Select Insert / Features / Move/Copy.

- Click the Translate / Rotate button at the bottom of the tree to change to the Move / Rotate options.
- Click in the Bodies to Move box to activate it and select the surface body on the right as indicated.
- More setting on the next page...
- Expand the Rotate section and select the Origin as the center of rotation.
- In the Z direction, enter -30.00deg for rotate angle (arrow).
- The preview shows the selected surface body is being rotated downwards.
- Click OK to exit the Move/Rotate command.

4. Extending a surface body:

- Click the Extend Surface command from the Surfaces toolbar.

- For Edges/Faces to Extend, select the edge as noted.

- For End Condition, select the Distance option.
- Enter $\mathbf{. 5 0 0 i n}$ for distance.
- For Extension Type, select the Same Surface option (Arrow).
- Click OK.

5. Creating a lofted surface:

- The surface that was deleted earlier will now get recreated, using its own existing geometry.
- Click Lofted Surface on the Surfaces tool bar.

- For Loft Profiles select the 2 curved edges as noted.

- Activate the Guide Curve section and select the 2 vertical edges as noted.
- The preview shows a new surface is being created.
- The grid lines on the preview surface is called the Mesh. To remove them, right click the preview surface, go to Mesh Preview and select: Clear All Meshed Faces.
- Click OK to accept and exit the Lofted Surface command.

select 2 edges

6. Repairing the broken surface body:

- The broken area can be repaired with a revolved surface. This repair involves a few steps: Convert the broken edges into a new sketch, remove its relations, revolve the sketch as a new surface, delete the broken area, and then knit the revolved surface to the surface part.
- Select the Front plane and open a new sketch.
- Sketch a horizontal centerline that will be used as the revolve line.
- Hold the Control key and select the $\mathbf{8}$ edges of the broken area as indicated below.
- Some of the converted lines are crossing the centerline, this will
 cause an overlapping error when revolving the sketch. Those lines need to be trimmed in the next step.

- Select the Trim Entities \square command from the Sketch toolbar.
- Select the Trim To Closet option (arrow).

- Add a vertical centerline and use it to trim one of the lines.
- Click on the portions of the lines that need to be deleted. When completed, all of the lines must be connected continuously.
- When an entity is converted from a model edge, SolidWorks creates a relation called On-Edge to reference it to the original entity. When the model edge is changed, the converted entity also changed.
- There are 8 on-edge relations that need to be removed, so that when the broken area is deleted, it will not cause the dangling errors.

- Click the Display/Delete Relations command from the Sketch toolbar.
- Under the relation section, select the option All In This Sketch (arrow).
- Highlight all On-Edge relations and click Delete All.
- Click OK to exit the Display/Delete Relation command.
- Switch to the Surfaces toolbar and select the Revolved Surface command.

- Select the horizontal centerline as the Axis of Revolution.
 , Revolution.
- Use the default 360deg revolve angle.

- Click OK.

7. Creating a split line:

- Although there are several ways that we can use to delete a surface, we are going to try the split line approach. The Split Line divides a surface body into 2 bodies, and the broken area can be deleted without affecting the other half.
- Select the Front plane and open a new sketch.
- Sketch a vertical line starting at the vertex shown.
- Switch to the Feature toolbar and select: Curves / Split Line.

- Use the default Projection option
- Click the surface body to split as noted.
- Click OK to complete and exit the split command.

8. Deleting surfaces:

- The broken area can now be deleted.
- Drag the Roll-Back line up one step to temporarily hide the Revolved Surface.

- Right click over one of the surfaces in the broken area and select the Delete option below the Face section.
- Select the 7 faces to delete as indicated.
- Under the Options section click the Delete button.

- Click OK to accept and exit the Delete Face command.
- The selected surfaces are deleted leaving a sharp clean edge that matches the edge of the Revolved Surface.
- Drag the Roll-Back line back down to the bottom.
- The Revolved Surface reappears. It will get knitted to the surface part in the next couple of steps.

9. Creating a section view:

- There are some areas that still need trimming. The section view will help us see and work with them a little easier.
- Select the Right plane from the FeatureManager tree and click the Section View command on the View Heads Up toolbar.

- Rotate the view to see the left end of the Revolved Surface.

10. Trimming the surfaces:

- Change to the Surfaces tool tab.
- Click the Trim Surface command.
- Select Mutual under the Trim Type.
- For Trimming Surface select the cylindrical body and the lofted surface as indicated.
- Click the Remove

Selection button and select the two surfaces

11. Creating the planar surfaces:

- Before the surface model can be turned back into a solid model, all openings should be closed off. One of the quick ways to do this is to use the Planar Surface command.
- Click the Planar Surface command from the Surfaces tool tab.
- Select the $\mathbf{3}$ circular edges as indicated for Bounding Entities.
- The preview of the new surfaces appears, indicating that they are being created.
- Click OK to accept and exit the Planar Surface command.

12. Knitting all surfaces:

- After all surface bodies are knitted into a single body, it can be made into a solid model.
- Click the Knit Surface command from the Surfaces tool tab.
- Expand the Surface Bodies folder on the FeatureManager tree.
- Select all surfaces inside of this folder; there should be a total of 6 surfaces.
- Enable the Try To Form Solid checkbox and uncheck the Gap Control option.

- Click OK to exit the Knit Surface command.

13. Verifying the solid model:

- Create a section view to see if the surface model has turned into a solid model.
- Select the Front plane from the FeatureManager tree and click the SectionView command.

- The preview should show the model is a solid part at this point.

- Click Cancel to exit the Section View command.

14. Saving your work:

- Click File / Save As.
- Enter Surface Modification_Exe for the name of the file.
- Click Save and replace the existing file when prompted.

