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Introduction 

The Significance of Large Motion 
Multibody Dynamics (hereafter referred to using the acronym MBD) is typified most of all by its ability to 
efficiently deal with appreciable motion. Such motion, and especially rotational motion, tends to be 
highly non‐linear in the spatial sense. Compounding this are effects which vary non‐linearly with time.  
Thus, all aspects of an MBD problem are usually mathematically very non‐linear. This is where Adams 
shines. It is specifically designed to deal efficiently with these nonlinearities. However, there is a price to 
be paid for this capability. A reader who is familiar with Finite Element Analysis (FEA) may be used to 
dealing with structural systems possessing hundreds of thousands of points of interest (e.g., “nodes” or 
“grids”), perhaps even millions of such points. While such models are extremely valuable, they are very 
often limited by the assumption of linearity if they are to remain computationally tractable. In other 
words, the assumption is made that the motion of all the points of interest is so limited that it doesn’t 
have to be tracked during the analysis, and the starting point positions are all that is needed. As we shall 
see later in this book, that is a serious restriction on what kinds of analysis can validly be performed. 
Because it is basic to the Adams MBD approach, the motion of the points of interest must be tracked, 
which limits the number of points of interest which can be considered if the Adams analysis is to remain 
tractable. As we shall see, however, there are methods which permit the direct use of linear FEA 
structures in Adams MBD models. Currently, extension of the Adams MBD capability to include complex 
structural nonlinearity is accomplished using co‐simulation methods, which are beyond the scope of this 
book. Methods to efficiently include structural non‐linearity directly in Adams, without resort to co‐
simulation, are under development as this book is published. 

The Intent and Scope of This Book 
This book is intended to familiarize the reader with the basics of theory and practice in Adams MBD 
modeling. The content has been developed to be beneficial to readers who are students or practicing 
engineers who are either completely new to MBD modeling or have some experience with MBD 
modeling. While this book is neither software user documentation nor a training guide, the author’s 
lengthy experience using the Adams software adds a practical and, occasionally, humorous complement 
to standard documentation and training materials, intended to benefit the reader learning Adams. The 
book features relatively small examples which can be readily built and executed by the reader. This book 
contains an introduction to Adams theory which provides the basics on how Adams models are 
formulated and then numerically solved. These sections are deliberately limited and make no claim to 
comprehensiveness. Finally, this book concludes with some “success stories” taken from industry. 

Acknowledgements 
The Adams (Automatic Dynamic Analysis of Mechanical Systems) program has its origins in the brilliant 
PhD thesis written at the University of Michigan in 1973 by Dr. Nicolae Orlandea (reference [5]). Using 
this thesis as a foundation, 3 University of Michigan pioneering software entrepreneurs (Dr. Milt Chace, 
Mike Korybalski, and John Angell) founded Mechanical Dynamics, Inc. (MDI) in 1976. The rest is history. 



8 

The author would also like to thank Dr. Frank Owen and Dr. Xi Wu, both of Cal Poly, for their critiques 
and assistance in generating this book. Further thanks go also to Leslie Bodnar of MSC for getting the 
ball rolling and to John Janevic of MSC for his skill and perseverance in editing the text. Finally, a very 
special thanks is due to Dominic Gallello, President and CEO of MSC Software, without whose vision, 
inspiration, encouragement, and support this book would not have happened. 

An Example to Come 
The figure below gives the reader a brief foretaste of the kind of analyses possible with Adams MBD 
analysis. The backhoe excavator shown is one of the sample problems examined in great detail later in 
this book. 

Figure 1 Excavator with Flexible Boom Arm Performing a Typical Duty Cycle 

The reader will be shown how to represent articulating Adams parts defined by CAD geometry, how to 
connect and drive those parts so that the system moves correctly, how to load the system appropriately, 
and how to interrogate the model for results. Finally, the excavator boom, initially modeled as a rigid 
body, will be rendered flexible using MSC Nastran, and the effects of its flexibility on the modeling 
results will be demonstrated. 

A brief note on conventions used throughout the examples and text in this book: capital letters (e.g. 
“PART”) are generally used to denote keywords and parameters in the Adams or MSC Nastran modeling 
languages; however, in practice capitalization is not necessary for these keywords and parameters. 
Every attempt is made to relate keywords to common terminology (e.g. “CBAR” is a beam element in 
the MSC Nastran modeling language), but where this has been missed or insufficiently explained, the 
reader is invited to refer to Adams and/or MSC Nastran documentation (details in the References 
section). 

Finally, at various points in the book, it will be helpful if the reader has some familiarity with the 
traditional usage paradigm of MBD (and FEA) tools: 
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• The user builds models of the product to be analyzed in a “preprocessor” or “user interface”
(e.g. Adams/View or Patran)

• The preprocessor generates a representation of the product and its relevant mechanical
characteristics in the native modeling language of the “solver” (e.g. Adams or MSC Nastran)

• Input to the solver consists of the model definition as well as a set of instructions for what
analysis to perform

• The solver generates and numerically solves the appropriate equations, generating (often large)
amounts of numerical output

• The user will then load the numerical output files into the “postprocessor” (e.g. Adams/View or
Patran) for convenience in interpreting the results (animations, plots, etc.)

MSC is at the forefront of innovations to this traditional usage paradigm as the steps in FEA and MBD 
become highly interactive, with exciting developments to come. 

Elementary Adams Theory 

Basic Formulations 
As commented on in the introduction, there are some fundamental differences between the FEA (Finite 
Element Analysis) and MBD (Multibody Dynamics) approaches to the analysis of an articulating 
mechanical system. In this theory section, the basic contrasts between the two approaches will be 
examined initially. Subsequently, a pendulum example will be dissected in some detail, with the intent 
being to show the basics of MBD equation formulation and subsequent numerical solution. 

The MBD Approach 
Based on the principles of Lagrangian Dynamics, Adams numerically constructs and solves the system 
equations as functions of time. These equations are usually both algebraic and differential as well as 
highly nonlinear. The basic approach employed by Adams uses Lagrange's formulation of the 2nd form: 
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Where: 

q = generalized coordinate 
F = the equilibrium equation in the direction of generalized coordinate q 
L = the Lagrangian (T-V) where T  kinetic energy; V  potential energy 
Φ = algebraic constraint equations 
λ = Lagrange multiplier 
Q = generalized Force 
n = # of generalized coordinates 
m = # of constraint equations (< or = n) 
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In the general case, the Q’s can be functions of q and time. The Φ’s are either constant (scleronomic) or 
continuous, time-varying (holonomic) algebraic constraints. In general, the Adams solution is always 
iterative. If m = n, all motion is pre-determined (i.e., the system has zero Degrees of Freedom, or 
“DOFs”), and the constraint equations alone are adequate to solve the problem, with any resulting 
forces being back-calculated. If the problem is time-invariant, but n is greater than m, the solution, if 
feasible, is an iterated, quasi-static result with time-invariant Q’s playing a role in the solution. 

The FEA Approach 
The FEA equations are Newtonian in form and employ coordinates which are spatially orthogonal 

3) { } [ ]{ } [ ]{ } [ ]{ }xKxCxMF ++= 

Where: 

x = coordinate 
F = the equilibrium forces in the orthogonal (Cartesian) coordinates 
M = the mass matrix 
C = the damping matrix 
K     = the stiffness matrix 

In the general case, F, M, C, and K can be functions of x and time. In the simplest case, when x is time 
invariant, K is constant, and the problem is not otherwise ill-posed, equation 3 submits to a single step 
solution. 

If the problem at hand is linear, both the FEA and MBD methods can produce valid, frequency domain 
solutions. If equation 3 is time-invariant and the coefficient matrices are constant, an eigenvalue 
solution is directly obtainable. In Adams, equation set 1 must first be linearized about some bona fide 
equilibrium point. 

In what follows, the frequency domain will not be further considered, and attention will be limited to 
time-varying, dynamic solutions only. Suffice it to say that “Physics is Physics” and, to be correct, both 
FEA and MBD must give the same results when applied to the same engineering problem. The deciding 
factor as to which method is employed must be based on which solution is most tractable and practical. 

Elementary Overview of Solution Approaches 
FEA Transient Response Analysis – Explicit Integration 
The direct transient response analysis in MSC Nastran (known in shorthand as “SOLUTION 109” or 
“SOL109”) is typical of the MSC Nastran FEA time-domain approach to the FEA solution of dynamical 
problems (for a more detailed description of the MSC Nastran approach, the reader is directed to 
reference [2]). In brief, the equations are solved using a modified Newmark-Beta approach.  In its most 
efficient form, the time step size is fixed, and the coefficient matrices in equation 3 are constant. The 
instantaneous velocities and accelerations are derived from central divided differences which divide 
consecutive displacements by the time step for velocities and divide consecutive displacements by the 
square of the time step for accelerations. In effect, this converts the problem into a pseudo-static form 
at each new point in time, permitting the use of standard matrix inversion coding. This solution is 
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explicit, meaning that each advance in time is determined from past, converged time steps only. This has 
important implications, as will be discussed in the examples to follow.  

MBD Transient Response Analysis – Implicit Integration 
Adams has several different solvers, including an explicit one similar to that employed by MSC Nastran 
SOL700. It is seldom used. Instead, implicit solvers, which use predicted states to advance in time, are 
employed. The use of implicit predictor-corrector solvers has profound implications for the solution of a 
broad class of dynamical problems. 

To illustrate the Adams implicit solution approach, let us postulate a very simple, unconstrained 
dynamics problem in a single generalized coordinate q.  The Adams equation set (equations 1 & 2) 
reduces to: 

4) 0Ef(q)QF ⇒=−=

Where: 

f(q) = some nonlinear function of q 
E = equilibrium error (to be driven to zero) 

Fig. 2 shows the initial prediction forward in time. 

Figure 2 Predictor-Corrector Solution Space 
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The initial predictor equation is 1st order and uses a default time step to advance the solution to time t. 
The predicted value of q will, in general, not satisfy the equilibrium equation and will result in an error E. 
With time fixed at t, the equation set is numerically differenced around the predicted q to determine 
the error change with q. This determines the tangent to the n-dimensional error hyper-plane. This is 
called the Jacobian [J]. Note that, in our simplified example, n=1 and the Jacobian is a simple tangent 
line to the error hyper-surface at q. In general, n will be much larger than 1, and the Jacobian will be an 
n-dimensional, osculating hyper-plane to the n-dimensional error hyper-surface (just try to draw that on 
a 2-D piece of paper!). 

Since the predicted solution results in error, it must be modified, if it can be, to reduce the error to 
within the requested error tolerance. To accomplish this, modified Newton-Raphson iteration is 
employed. The corrections to the predicted q are determined from: 
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This process is repeated as shown schematically in Fig. 3. 

Figure 3 Newton-Raphson Iteration 
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If the error criterion cannot be met, the time step is reduced, and the process is repeated. Even if the 
corrector converges, the change in q must satisfy the remainder limit of the Taylor series expansion of 
the predicting polynomial. If this criterion is not met, the converged time step is discarded, the 
integrator “back-steps” in time, returning to the previously-converged time step (or back to the starting 
initial conditions if the analysis is just beginning), and starts the process again with a less aggressive 
predictor time step.  

As the time solution progresses, more converged history is available for all the q’s, and, in order to 
minimize solution time, the solver will try, based on numerical criteria, to increase the time step size 
(the output step size is the upper limit) and will also try to increase the order of the predicting 
polynomial (maximum order used in Adams is 6). 

The term “modified” is applied to the iteration scheme because, to speed the solution, it is not always 
necessary to update the system Jacobian at each iteration. A major computational cost in Adams is 
associated with the computation of the Jacobian inverse. For this reason the inverse of the Jacobian is 
“mapped” so that it can be quickly updated. Further, the inverse selected is a compromise chosen 
between maintenance of system equation set sparsity and retention of adequate equation set numerical 
conditioning. Sparsity is critical to fast solution speed, and system matrices that are only 3-5% populated 
are not uncommon. However, if upon updating during the solution, the Jacobian should sufficiently 
degrade (one or more of the terms being used as pivot for solution purposes approaches zero), it is “re-
factorized” (e.g. re-mapped) and new pivots are chosen to restore equation set health. Problems which 
continually re-factorize are generally poorly defined and/or ill-posed. 

Numerical “Stiffness” 
A numerically “stiff” system is one possessing widely split eigenvalues. Fig. 4 depicts a 2 DOF 
spring/mass/damper system in which the masses are constrained to move vertically. Assume that K1 and 
C1 are large, that K2 and C2 are small, and that the resulting undamped system eigenfrequencies are 5 
kHz and 5 Hz. Assume further that at least 10 output steps are necessary to track a complete 

Figure 4 Excited 2 DOF Spring/Mass/Damper System 
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deformation cycle. This implies that the maximum permissible time step is 2.0e-5 seconds as long as the 
5 kHz motion is present. An explicit solver always assumes the highest potential frequency in the system 
may be active, thus the integrator step is “maxed” at 2.0e-5. An implicit integrator, on the other hand, 
“senses” the highest, currently-active system frequency and opens the time stepping accordingly. 
Assume for the moment that F(t) initially excites the 5 kHz motion but that the damping factor C1 quickly 
drives this motion to zero. The implicit solver can now, since it is now dealing with a 5 Hz problem, 
increase the step size to 2.0e-2 second, resulting in a thousand-fold improvement in execution speed, 
and the time step will stay there unless F(t) should, again, excite the high frequency. Even if F(t) is not a 
source of high frequency excitation, the numerical solution itself of the system equations can result in 
solver “noise,” leading to spurious system frequency excitation. This points out the importance of 
always including damping, however small it may be, in a simulation. It is always present when materials 
dynamically deform, except, perhaps, for those esoteric cases where the temperature of the deforming 
material approaches absolute zero. 

There are potential issues with use of an implicit solver. A successful (i.e., converging) explicit solution 
will, in general, also be numerically accurate. A converging implicit solution may not be, unless the error 
control is sufficiently tight. A “rule of thumb” associated with implicit solvers is that the solution is not 
truly accurate unless the results stop changing with successive reductions in error tolerance. This 
consideration is often overlooked in practice.  

In addition to MSC Nastran SOL109, other capabilities in the MSC Nastran FEA solution suite are 
SOLUTION 400 (implicit nonlinear analysis, based on MSC’s Marc solver) and SOLUTION 700 (explicit 
nonlinear analysis, based on LSTC’s LS-DYNA solver). SOL700 is limited to explicit numerical solution. 
MSC Nastran SOL109 and SOL400, like Adams, solve implicitly (at least by preference). The decision as to 
which solution to employ depends in large part on the importance of certain problem attributes. 

Problem Attributes 
The decision as to which solution to employ for an engineering problem depends on, in addition to 
explicit/implicit solver considerations, other factors, some principle ones of which are: 

1) Constitutive Considerations
2) Degree-of-Freedom (DOF) Count – Structural vs. Mechanism
3) Event Motion/ Duration

Constitutive Considerations – Deformable vs. Non-Deformable 
Rigid Components 
If the structural deformation of the system components can be ignored (i.e., the components are 
considered rigid), MBD is the automatic choice. Even if the connections between the components are 
functionally complex, FEA cannot hope to compete in computational efficiency, completeness, and ease 
of use. MBD, with its algebraic constraint capability and its use of convecting reference frames (see 
below) is specifically designed to deal very efficiently with this type of problem. 




