
Automating 
SOLIDWORKS 2017 
Using Macros

Mike Spens

®

A guide to creating VSTA 
macros using the Visual 
Basic.NET Language

SDC
P U B L I C AT I O N S www.SDCpublications.com

Better Textbooks. Lower Prices.

https://www.sdcpublications.com


Visit the following websites to learn more about this book:

           

Powered by TCPDF (www.tcpdf.org)

https://www.sdcpublications.com/Textbooks/Automating-SOLIDWORKS-2017-Using-Macros/ISBN/978-1-63057-084-2/
https://www.amazon.com/gp/product/1630570842?ie=UTF8&tag=sdcpublications&linkCode=as2&camp=211189&creative=374929&creativeASIN=1630570842
http://books.google.com/books?vid=ISBN1630570842&printsec=frontcover
http://www.barnesandnoble.com/s/1630570842?dref=1&keyword=1630570842
http://www.tcpdf.org


57 

Material Properties 

 Basic Material Properties

 Adding Forms

 Arrays

 Working with Assemblies

 Selection Manager

 Verification and Error Handling





59 

Introduction 

This exercise is designed to go through the process of changing settings for materials.  It will 

also review several standard Visual Basic.NET programming methods. It will also examine a 

method for parsing through an assembly tree to change some or all of the parts in the assembly. 

As an additional preface to this chapter, remember that SOLIDWORKS sometimes does things 

better than your macros might.  For example, you can select multiple parts at the assembly level 

and set their materials in one shot.  This chapter was originally written before you could set 

materials so easily.  As a result, you should use this chapter as a means to better understanding 

some of the tools available through Visual Basic.NET and the SOLIDWORKS API rather than 

as a handy tool that SOLIDWORKS does not provide already.  No matter how clever you get 

with your macros, at some point someone else might come up with the same idea.  In the perfect 

world, you should obsolete your macros as SOLIDWORKS adds the functionality to the core 

software. 

Part 1: Basic Material Properties 

The first step will be to make a tool that allows the user to select a material from a pull-down list 

or combo box.  When he clicks an OK button, the macro should apply the selected material to the 

active part.  The user should be able to cancel the operation as well. 

We could take the approach of recording the initial macro, but the code for changing materials is 

simple enough that we will build it from scratch in this example. 

User Forms 

Two different methods for gathering user input have already been introduced.  The first was the 

input box.  That’s fine for simple text input.  The second was using Microsoft Excel, enabling 

creation of command buttons and multiple input values in cells.  More commonly, developers 

organize user input in a custom dialog box or form.  These allow users to input text, click buttons 

to activate procedures, and select options.  This example builds a form that looks like the one 

shown using a drop down list or ComboBox and two buttons. 

1. Start a new VSTA macro and save it as materials.vbproj.

2. Add a form to your macro by selecting Project, Add Windows Form.

3. Choose the Visual Studio Dialog template and click Add.



Material Properties 

60 

A new form will be added to your project named Dialog1.vb and will be opened for editing.  The 

Dialog template has two pre-defined Button controls for OK and Cancel.  To add additional 

controls to the form you will need to access the controls Toolbox from the left side of the VSTA 

interface.  It is a collapsed tab found immediately to the left of the newly created dialog form.   

A ComboBox control must be added to the form.  

4. Click on the Toolbox and optionally select the pushpin to keep it visible as you build

your form.

5. Drag and drop the ComboBox control  from the Toolbox onto your form. 

After adding the ComboBox and resizing, your form should look something like the following.  

An effective form is one that is compact enough to not be intrusive while still being easy to read 

and use. 



Material Properties 

61 

Object Properties 

Each form control has properties you can change to affect its visual display as well as its 

behavior.   The properties panel is visible on the right side of VSTA under the Project Explorer. 

6. Select the OK button on the form.  The Properties window will list the control’s

properties.

7. Review the following properties that were pre-defined by the use of the Dialog template.

 Text = OK.  This is the text that is visible to the user.  Use an ampersand (&) before a

character to assign the Alt-key shortcut for the control.  Entering &OK defines Alt-O

as the shortcut.

 (Name) = OK_Button.  This name is what your code must reference to respond to the

button or to change its properties while your macro is running.

8. Select the Cancel button and review its Text and Name properties as well.



Material Properties 

62 

9. Click anywhere inside the form, not on a control, and change its Text property to

“Materials.”

10. Review the following additional properties of the form.

 AcceptButton = OK_Button

 CancelButton = Cancel_Button

11. Select the ComboBox and set its Name to “Materials_Combo.”

Show the Dialog 

The macro needs a line of code that will display the form at the right time.  If you run the macro 

right now, it will not do anything since the main procedure is empty. 

12. Switch back to the SolidWorksMacro.vb tab and add the following code in your main

procedure.

Sub main() 

    'Initialize the dialog 

    Dim MyMaterials As New Dialog1 

    Dim MyCombo As Windows.Forms.ComboBox 

    MyCombo = MyMaterials.Materials_Combo 

    'Set up materials list 

    Dim MyProps(2) As String 

    MyProps(0) = "Alloy Steel"

    MyProps(1) = "6061 Alloy" 

    MyProps(2) = "ABS PC" 

    MyCombo.Items.AddRange (MyProps) 

    MyMaterials.ShowDialog () 

End Sub 

13. Run the macro and test.

You should see your new dialog box.  This is a result of MyMaterials.ShowDialog() at the 

bottom of the code.  Every user form has a ShowDialog method that makes the form visible to 

the user and returns the user’s action.   



Material Properties 

63 

If you click on the combo box, you should see Alloy Steel, 6061 Alloy and ABS PC listed.  

14. Close the running macro and return to the VSTA interface.  If needed, click Stop

Debugging .

There are a few steps required to make a form or dialog visible.  The first is to declare a variable 

named MyDialog as a new instance of the Dialog1 class.  Even though you have created a 

dialog in the project, it is not created or used at run time until you reference it.  It’s worth 

mentioning that the name of the class does not always match the name of the file as it does in this 

example.   

15. Review the code behind Dialog1.vb by right-clicking on it in the Project Explorer and

selecting View Code.

Imports System.Windows.Forms 

Public Class Dialog1 

Private Sub OK_Button_Click(ByVal sender … 

[Additional code here] 

End Sub 

… 

End Class 

Notice that the code in the form itself is declared as a public class named Dialog1.  You can 

change the name of the class without changing the name of the vb code file.  In fact, a single 

code file can contain as many classes as you want, though it makes it more difficult to manage 

and reuse. 

16. Switch back to the SolidWorksMacro.vb tab to return to the main procedure.

The first time you use any class, whether it be code or a dialog, you must use the New keyword 

before you can reference it.  This is distinctly different than Visual Basic 6 (VBA).  VBA creates 

new instances of forms and dialogs as soon as they’re referenced.  It may seem that the .NET 

method of referencing forms is a little more verbose, but it has real benefits we’ll see later. 

Windows.Forms Namespace 

A variable named MyCombo was declared as Windows.Forms.ComboBox and was set to the 

Materials_Combo control from the instance of the form named MyMaterials.  The 

declaration defines the namespace or library a control comes from.  The ComboBox class is a 

child of the Forms namespace which is a child of the Windows namespace.  To add another level 

of complexity, the Windows namespace is a member of the System namespace which has 

already been referenced by the Imports statement at the top of the code window.  Think of 

namespaces as libraries of pre-build elements. 

Since the macro will reference several components from the Windows.Forms namespace, it will 

make the code less wordy to import that namespace. 



Material Properties 

64 

17. Add the following Imports statement to the top of the code window to reference the

namespace.  Notice that this same imports statement was automatically added to the

Dialog1.vb code.

Imports SOLIDWORKS.Interop.sldworks 

Imports SOLIDWORKS.Interop.swconst 

Imports System.Runtime.InteropServices 

Imports System 

Imports System.Windows.Forms 

Now the declaration of MyCombo can be simplified as follows. 

Dim MyCombo As ComboBox 

Now that there is a reference to the ComboBox control, it is populated with an array of values. 

Arrays 

An array is simply an ordered list of values.  The general syntax to declare an array is Dim 

variablename(x) As type.   

MyProps(2) was declared as a string data type.  In other words, you made room for three text 

elements in that one variable.  “Wait!  I thought you declared two?”  Arrays count from a zero 

element, so a size of 2 gives room for 3.   

ComboBox.Items.AddRange Method 

To populate the combo box with the array, you must tell the macro where to put them.  Typing 

MyCombo.Items.AddRange (MyProps)tells the procedure that you want to populate the 

items (or list) of the MyCombo control with the values in the MyProps array by using the 

AddRange method.  The ComboBox control automatically creates a row for each element in the 

array.  If you wanted to add items one-at-a-time rather than en masse, you could use the Add 

method of the Items property. 

DialogResult 

After a user has selected the desired material, it should be applied to the active part after clicking 

OK.  If the user clicks Cancel, we would expect the macro to close without doing anything.  At 

this point, either button simply continues running the remaining code in the main procedure – 

which is nothing. 

18. Modify the main procedure as follows to add processing of the DialogResult.

... 

MyProps(0) = "Alloy Steel" 

MyProps(1) = "6061 Alloy" 

MyProps(2) = "ABS PC" 

MyCombo.Items.AddRange (MyProps) 

Dim Result As DialogResult 

Result = MyMaterials.ShowDialog () 



Material Properties 

65 

If Result = DialogResult.OK Then 

    'Assign the material to the part 

End If 

End Sub 

The ShowDialog method of a form will return a value from the 

System.Windows.Forms.DialogResult enumeration once the form is closed or dismissed.  Any 

code after ShowDialog will then be run.  Since we have added the Imports 

System.Windows.Forms statement in this code window, the code can be simplified by 

declaring Result as DialogResult.  You probably noticed that when you typed If 

Result = , IntelliSense immediately gave you the logical choices for all typical dialog results.  

As a result of the If statement, if the user chooses Cancel, the main procedure will find the If 

statement False, skip the inner code, and run to the end. 

Setting Part Materials 

Let’s get the macro to do something with SOLIDWORKS.  The next step will be to set the 

material based on the material name chosen in the drop down. 

19. Add the code inside the If statement to set material properties as follows.

If Result = DialogResult.OK Then 

'Assign the material to the part 

    Dim Part As PartDoc = Nothing 

    Part = swApp.ActiveDoc 

    Part.SetMaterialPropertyName2 ("Default", _ 

    "SOLIDWORKS Materials.sldmat", MyCombo.Text) 

End If 

IPartDoc Interface 

Notice the new declaration of the Part variable as IPartDoc rather than ModelDoc2.  Think of 

IModelDoc2 as a container that can be used for all SOLIDWORKS files.  It could be a part, an 

assembly or a drawing.  There are many operations that are common across all file types in 

SOLIDWORKS such as adding a sketch, printing and saving.  However, there are some 

operations that are specific to a file type.  Material settings, for example, are only applied at the 

part level.  Mates are only added at the assembly level.  Views are only added to drawings.  

Since we are calling a function specific to a part, the IPartDoc interface is the appropriate 

reference.  The challenge is that the ActiveDoc method returns an IModelDoc2 interface which 

could be a IPartDoc, an IAssemblyDoc or a IDrawingDoc.  They are somewhat interchangeable.  

However, it is good practice to be explicit when you are trying to call a function that is unique to 

the file type.   Explicit declaration also enables the correct IntelliSense information, making 

coding easier. 

IPartDoc.SetMaterialPropertyName2 Method 

The simplest way to set material properties is using the SOLIDWORKS materials library.  

SetMaterialPropertyName2 is a method of the IPartDoc interface and sets the material based on 

its configuration and a specific database. 



Material Properties 

66 

IPartDoc.SetMaterialPropertyName2 (ConfigName, Database, Name) 

 ConfigName is the name of the configuration to be used.   Pass the name of a specific

configuration as a string or use “” (an empty string) to set the material for the active

configuration.

 Database  is the path to the material database to use, such as SOLIDWORKS

Materials.sldmat.  If you enter “” (an empty string), it uses the default SOLIDWORKS

material library.  Use a fully qualified path if the library isn’t working as expected.

 Name is the name of the material as it displays in the material library.  If you misspell the

material, nothing will be applied.

The macro is now fully operational.  Try it out on any part.  

Part 2:  Working with Assemblies 

You can now extend the functionality of this macro to assemblies.  

Is the Active Document an Assembly? 

To make this code universal for parts and assemblies, we need to know what’s active.  If the 

active document is an assembly, we need to do something to the selected components.  If it is a 

part, we run the code we already have. 

20. Add the following If statement to check the active document type.  The previous code has

been moved inside this If statement (not bold).

If Result = DialogResult.OK Then 

  Dim Model As ModelDoc2 = swApp.ActiveDoc 

  If Model.GetType = swDocumentTypes_e.swDocPART Then 

'Assign the material to the part 

Dim Part As PartDoc = Model 

'Part = swApp.ActiveDoc 

Part.SetMaterialPropertyName2 ("Default", _ 

"SOLIDWORKS Materials.sldmat", MyCombo.Text) 

  ElseIf Model.GetType = swDocumentTypes_e.swDocASSEMBLY Then 

Dim Assy As AssemblyDoc = Model 

    'set materials on selected components 

  End If 

End If 

Notice the interchange between ModelDoc2, IPartDoc and IAssemblyDoc.  The declaration of 

Model has also been simplified.  Rather than initializing the variable to Nothing like the 

previous examples, it is initialized directly to swApp.ActiveDoc.  This is a shorthand way to 

declare the variable and set its value.  When Part and Assy are declared, they are initialized to 

Model which is still a reference to the active document.  However, since they are declared 

explicitly as IPartDoc and IAssemblyDoc, they inherit the document type specific capabilities of 

parts and assemblies. 



Material Properties 

67 

Also, notice the use of the IModelDoc2.GetType method.  GetType is used to return the type of 

ModelDoc that is currently active.  This test is important before attempting to deal with specific 

IPartDoc and IAssemblyDoc methods.  For example, if you use the general ModelDoc2 

declaration and attach to the active document, and it is a part, any attempt to call an assembly 

API like AddMate will cause an exception or crash.  The enumeration swDocumentTypes_e lists 

the possible types.  When you typed in the code, you should have noticed the different document 

types show up in the IntelliSense pop-up. 

Selection Manager 

In the Model Parameters exercise we discussed the SelectByID2 method.  However, the code had 

to be specific.  We had to pass the name of the component or a selection location, but that gets 

restrictive if you expect a user to interact with your macro.  To get around those limitations you 

can employ a pre-selection method that is similar to most SOLIDWORKS features.  You can 

require the user to pre-select the components he wishes to change prior to running the macro.  

Then write your macro to operate on each item the user selects.  The Selection Manager interface 

makes this easy. 

Connecting to the ISelectionMgr interface is similar to getting the IPartDoc (called Part).  The 

Selection Manager is a child of IModelDoc2.   

21. Add the following code inside the assembly section of the If statement to declare the

Selection Manager and to attach to it.

ElseIf Model.GetType = swDocumentTypes_e.swDocASSEMBLY Then 

   Dim Assy As AssemblyDoc = Model 

   'set materials on selected components 

   Dim SelMgr As SelectionMgr 

   SelMgr = Model.SelectionManager 

End If 

... 

From the Selection Manager, you can get to the selected object count, type, or even the xyz point 

in space where the object was selected.  In this macro you will need to access the selected object 

count (number of items selected), and get to the components that were selected.  Remember that 

components in SOLIDWORKS can be either parts or assemblies.  Since we can only set density 

for parts, we will need to make sure the item selected is a part.  For each item in the Selection 

Manager, get to IModelDoc2 and then set its material if it is a part.   

22. Add the following code to set the material to all selected components.

ElseIf Model.GetType = swDocumentTypes_e.swDocASSEMBLY Then 

  Dim Assy As AssemblyDoc = Model 



Material Properties 

68 

  'set materials on selected components 

  Dim SelMgr As SelectionMgr 

  SelMgr = Model.SelectionManager 

  Dim Comp As Component2 

  Dim compModel As ModelDoc2 

  For i As Integer = 1 To _ 

  SelMgr.GetSelectedObjectCount2 (-1) 

    Comp = SelMgr.GetSelectedObjectsComponent4 (i, -1) 

    compModel = Comp.GetModelDoc2 

    If compModel.GetType = swDocumentTypes_e.swDocPART Then 

compModel.SetMaterialPropertyName2 ("Default", _ 

"SOLIDWORKS Materials.sldmat", MyCombo.Text) 

    End If 

  Next 

End If 

... 

For … Next Statements and Loops 

As was mentioned earlier, you want to set the material properties for each part that was selected 

by the user.  What if the user has selected 500 parts?  You certainly do not want to write 500 

lines of code for each item selected.  In many cases you will want to apply the same action to a 

variable number of items.   

For … Next statements allow you to repeat a section of code over as many iterations as you 

want.  You just have to know how many times to loop through the code if you use a For … Next 

statement.   

For I As Integer = 0 To 10 

MsgBox ("You have clicked OK " & I & " times!") 

Next I 

Add this sample code to a procedure and then run.  You get a message box stating how many 

times you have clicked OK.  That is great if you know how many times the loop needs to 

process.  In the macro, you do not know how many times to repeat the loop because you do not 

know how many parts the user might select. You can use ISelectionManager to help. 

ISelectionMgr.GetSelectedObjectCount2 

The number of selected items is retrieved by using GetSelectedObjectCount2.  The argument 

passed is related to a selection Mark.  A value of -1 indicates all selections will be counted, 



Material Properties 

69 

regardless of Mark.  See the API Help for more information on marks.  They’re critical for 

features that require several distinct selection sets. 

For i = 1 To SelMgr.GetSelectedObjectCount2 (-1) 

‘(loop code here) 

Next i 

The For loop starts with an initial i value of 1 so that it will only loop if the number of selected 

items is greater than zero. If nothing is selected, the method returns 0. 

GetSelectedObjectsComponent4 

The next step is to get the ModelDoc for each of the selected items.  It requires a two-step 

process.  The first gets the IComponent2 interface through the selection manager’s 

GetSelectedObjectsComponent4 (item number, Mark) method.  The Mark argument is again -1 

to get the component regardless of selection Mark.  The underlying ModelDoc is retrieved from 

IComponent2.   Notice the declarations for compModel and Comp.  They are specific to the 

type of SOLIDWORKS object we are accessing. 

GetModelDoc2 

IComponent2.GetModelDoc2 gives access the underlying IModelDoc2.  No arguments are 

required. 

Now that you have the ModelDoc, you can use the same code from the part section to set the 

material properties after checking its type for parts.   

Component vs. ModelDoc 

If you have been wondering why we have to take the time to dig down to the IModelDoc2 

interface of the Component, this discussion is for you.  If not, and it all makes perfect sense, 

move on to the next subject.   

Think of it this way – an IComponent2 interface understands information about the IModelDoc2 

it references.  It knows which configuration is showing, which instance it is, if it is hidden or 

suppressed, and even the component’s rotational and translational position in the assembly.  All 

of these can be accessed and changed using the IComponent2 interface.  However, if you want to 

change something specific to the underlying part such as its material density, or to the underlying 

assembly such as its custom properties, then you must take the extra step of getting to the 

IModelDoc2 interface.   

Verification and Error Handling 

It’s always a good practice to check the user’s interactions to make sure they have done what you 

expected.  After all, your macro may not have a user’s guide.  And even if it does, how many 

people really read that stuff?  If you’re reading this, you probably would.  What about the other 

95% of the population? 

You should make sure the user is doing what you expect.  First, define some criteria. 



Material Properties 

70 

 Is the user in an assembly?  The user must be in an assembly in our example to use the

GetSelectedObjectsComponent4 method.

 If the active document is an assembly, has the user pre-selected at least one part?  If not,

they may assume they are applying material properties while nothing happens.

 Has the user selected items other than parts?  If they select a plane or sketch, the macro

may generate an exception or crash because there is no IModelDoc2 interface.

 Does the user even have a file open?

The only conditions left untested are the number of selections and if there is an active document. 

23. Add the following immediately following the declaration of Model to check for an active

document.

... 

Dim Model As ModelDoc2 = swApp.ActiveDoc 

If Model Is Nothing Then 

  MsgBox ("You must first open a file.", MsgBoxStyle.Exclamation) 

  Exit Sub 

End If 

... 

24. Add the following to verify that the user has selected something in an assembly.

... 

Dim Comp As Component2 

Dim compModel As ModelDoc2 

If SelMgr.GetSelectedObjectCount2 (-1) < 1 Then 

  MsgBox ("You must select at least one component.", MsgBoxStyle.Exclamation) 

  Exit Sub 

End If 

For i As Integer = 1 To SelMgr.GetSelectedObjectCount2 (-1) 

  Comp = SelMgr.GetSelectedObjectsComponent3(i, -1) 

… 

If … Then…Else Statements 

If the active document is an assembly, you should check if the user has selected at least one 

component before continuing.  Check GetSelectedObjectCount2 for a value less than one.  If it is 

less than one the user has failed to select anything. 

MsgBox 

Make use of the Visual Basic MsgBox to give the user feedback.  This pre-defined dialog has an 

OK button by default, but it can have Yes and No buttons, OK and Cancel, or other 

combinations.  If you use anything besides the default you can use the return value to determine 

which button the user selected, similar to using ShowDialog on the form. 



Material Properties 

71 

The macro now gives the user better feedback.  It makes good programming sense and is worth 

the extra effort to build good error handling into your macros.  Users tend to quickly get 

frustrated when a tool crashes or generates undesired results. 

Conclusion 

Windows Forms are easy to design and are highly customizable.  Get creative and ask for user 

feedback as you develop your own tools.  The Selection Manager will also help you process 

most user selections.  Finally, explore and experiment with IComponent2, IModelDoc2, 

IPartDoc, IAssemblyDoc and IDrawingDoc and their unique methods and properties, as well as 

their relationship to each other. 




