
Lockhart &
Tilleson

AN ENGINEER’S INTRODUCTION TO
PROGRAMMING WITH
MATLAB 2018

Shawna Lockhart
Eric Tilleson

®

SDC
P U B L I C AT I O N S www.SDCpublications.com

Better Textbooks. Lower Prices.

https://www.sdcpublications.com

Visit the following websites to learn more about this book:

Powered by TCPDF (www.tcpdf.org)

https://www.sdcpublications.com/Textbooks/Engineers-Introduction-Programming-MATLAB-2018/ISBN/978-1-63057-206-8/
https://www.amazon.com/gp/product/1630572063?ie=UTF8&tag=sdcpublications&linkCode=as2&camp=211189&creative=374929&creativeASIN=1630572063
http://books.google.com/books?vid=ISBN1630572063&printsec=frontcover
http://www.barnesandnoble.com/s/1630572063?dref=1&keyword=1630572063
http://www.tcpdf.org

 INTRODUCTION 15

2
Objectives
When you have com-
pleted this tutorial, you
will be able to

1. Understand and apply
operator precedence.

2. Assign a value to a
variable.

3. Understand the
minimum and
maximum value of
various numeric
variable types.

4. Understand the
difference between
string and character
arrays.

5. Work with data from
an imported file.

PROGRAMMING BASICS:
OPERATORS & VARIABLES

Introduction
This tutorial gets you started working with MATLAB as a programming
language. There are a whopping number of programming languages out
there, but a lot of them use the same handful of basic elements. This
means that after you learn your first programming language, you’ve
got a conceptual leg up on many of the rest and only need to learn
new syntax (the “grammar” rules) to hit the ground running. The basic
concepts will be familiar if you have done a bit of programming, but if
so, look for MATLAB-specific syntax and usage information.

Operators
Operator is a fancy name for symbols like +, -, and <. Operators are
normally broken into usage-based categories: arithmetic, relational, and
logical. More operators will be discussed when we get to matrices.

Arithmetic Operators
Arithmetic operators are used on numbers and return a number. You
used them in our earlier tutorial and they are similar to functions on a
calculator, so these should seem familiar.

Operator Action
+ Addition (3 + 2)
- Subtraction (3 – 2)
* Multiplication (3 * 2)
/ Division (3 / 2)
^ Raise to the power (3 ^ 2)

Relational Operators
Relational operators make a comparison. The comparison results in
a logical value. A logical value is one that has just two states: true or
false, which are represented by 1 for true and 0 for false.

Operator Meaning
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
== Equals
~= Does not equal

Note: MATLAB is the name
of both the programming
environment (the MATLAB
program itself) and the
programming language used
in that environment. Both uses
are fairly interchangeable in
conversation, if you ever have
those sorts of conversations.

Tip: Operators also have
function forms; for instance
plus(3,4), which does the same
thing as 3 + 4. Their reason for
being is beyond our scope and
we won’t be using them. See
the MATLAB help section on
operators if you’re curious to
learn more.

16 Tutorial 2 PROGRAMMING BASICS: OPERATORS & VARIABLES

Not All Equals are Equal
A quick word about the equals sign operators. MATLAB has more than
one operator that uses equals signs (=) and they act differently. If you
have done some programming, you are probably used to the idea that
“=” is not used for comparison, but rather to assign the value from the
right side of the equals sign to the variable on the left side. For example:

 index = index + 1

is a perfectly legitimate assignment statement (for the new value, add
1 to the old value), but the two sides are certainly not mathematically
equal.

Type the following lines in the Command Window and observe the
results:

>> x = 3

>> x == 3

The results display in the Command Window similar to Figure 2.1.

Figure 2.1

The command x = 3 assigns the value 3 to the variable x. The command
x == 3 asks “Is x equal to 3?” and returns a value of 1, which means
“true” since we just set it equal to 3. We’ll talk about this again, but the
accidental use of = when you meant == is a common coding error.

Logical Operators
Here are the logical operators. These operators are used on logical
values and result in a logical value.

Operator Meaning
&& and
|| or
~ not

Logical operators might be new to you. Logical operators test for true or
false and report either 1 (true) or 0 (false). In your code, you can either
use 1 and 0 or the keywords true and false.

Tip: If you have used MathCAD,
you may know that it also uses
different types of equal signs for
various operators but they are
not the same ones as Matlab
uses! Ha ha.

Tip: The MATLAB data type
logical is similar to the Boolean
type in other languages.

Tip: Don’t type the >>.
Remember that >> is the prompt
in the Command Window.

Tip: Remember variables are
placeholders for data (numerical
values, text strings, etc.). We
will talk about them in more
detail soon. We are using x as
our variable name. We could
have named it Jacobson or
xcd123 (but not 123xcd as
variable names must start with a
letter). Our variable, x, will stay
equal to 3 until we store some
other value in variable x, or we
clear the Workspace.

 LOGICAL OPERATORS 17

The not (~) Operator
The (~) operator (not) is straightforward: it reverses the logical value
of the expression that it’s applied to, so that true (1) becomes false (0)
and false (0) becomes true (1). You can use either the symbol ~ or the
command word, not.

Type this line into the Command Window for a demonstration:

>> ~ (x == 3)

Since x was previously set to 3, the value within the parentheses is
evaluated is true (x is exactly equal to 3), then the ~ operator is applied
to reverse it to false (0). The Command Window displays: ans =
logical 0.

The and (&) Operator
The & operator (and) returns true only when both of the logical values
it compares are true. This grid shows the results of X & Y for logical
values X and Y:

X Y X and Y Explanation

true (1) true (1) true (1) X & Y is true if X is true and Y is true

true (1) false (0) false (0) X & Y is false if X is true and Y is false

false (0) true (1) false (0) X & Y is false if X is false and Y is true

false (0) false (0) false (0) X & Y is false if X is false and Y is false

The or (|) Operator

The | operator (or) returns true when either or both of the logical values
it compares are true. This grid shows the results of X | Y for logical
values X and Y:

X Y X or Y Explanation

true (1) true (1) true (1) X | Y is true if X is true and Y is true

true (1) false (0) true (1) X | Y is true if X is true and Y is false

false (0) true (1) true (1) X | Y is true if X is false and Y is true

false (0) false (0) false (0) X | Y is true if X is false and Y is false

The & and | operators compare expressions that return a logical value
rather than comparing simple logical values. We’ll see a lot of this when
we talk about if-then and while statements.

For now, experiment a little by entering the next lines in the Command
Window and noting the results.

Tip: The tilde (~) is usually
at the very upper left of the
numbers row on your keyboard.

Tip: Want to get rid of a single
variable from your Workspace
without clearing them all? Use
the clear command as usual,
but specify the variable to
delete. For example, clear x.

Tip: Exclusive or means A or B,
but not A and B. This operator is
available as xor.

Tip: You can type & or you
can use the command word
and. You can type | or use the
command word or.

Tip: The or operator has two
versions that are not quite the
same: | and ||. The element-
wise or operator is |.The
short-circuit or operator is
||. Short circuiting behavior
for the operator means that
once a condition is evaluated
that causes the result to be
determined, the remainder of
the conditions are skipped. For
example, if any element of the
or operation is true, then the
operation evaluates as true, so
the remaining conditions can be
skipped. The && operator is the
short-circuiting version for and.

18 Tutorial 2 PROGRAMMING BASICS: OPERATORS & VARIABLES

Work through each side of the logical equations to understand why
each line returns the logical 1 (true) or 0 (false) that it does.

Command Window entry Result
x = 3; assigns value of 3 to x
y = 2; assigns value of 2 to y
z = 2; assigns value of 2 to z
x == y ans = logical 0 (false)
y == z ans = logical 1 (true)
x == y & y == z ans = logical 0 (false)
x == y | y == z ans = logical 1 (true)
~(x == y) & y == z ans = logical 1 (true)

The Logical Data Type
Relational and logical operators return a variable that is of type logical.
This type has two values, 0 for false and 1 for true. Logical 1s and 0s
are not the same as normal 1s and 0s, but the differences can be subtle.
Watch out for situations where a statement expects a logical value. Though
MATLAB will often automatically do any necessary conversion for you, a
good programmer doesn’t count on that. When a logical value is needed in
your code, use the built-in MATLAB function logical() to create it. Type these
lines into the Command Window and note the type that x and y are assigned.

>> x = 1;

>> y = logical(1);

>> class(x)

You see the result, ans = ‘double’. Double is the default numerical
data type in MATLAB. It stores values between ± 3.4 x 1038.

>> class(y)

You see the result, ans = ‘logical’.

To check whether a value is of type logical, use the MATLAB function
islogical(). Type these lines into the Command Window:

>> islogical(x)

>> islogical(y)

While MATLAB returns the logical 1 and 0 in the Command Window,
in your code you can also use the MATLAB constants true and false,
which are the same as logical(1) and logical(0).

Operator Precedence
Operator precedence is the order in which operations are executed in
a statement that contains more than one operator. We just saw some
examples above. The statements x == y and y == z were executed
before the && or || operator was used. This shows that the == relational
operator has a higher precedence than the logical && and || operators.

Tip: Check the Workspace to
see the value your variable
has. If the Value column
doesn’t show, right-click to the
left of the Name area and use
the menu to select Value.

Tip: Functions generally have
some input or “argument” that
they act on. For example:
 islogical (x)
asks is the “argument” x of the
type logical. If it is the answer
is 1 (true), if not the answer is
0 (false). We write islogical()
to show you that the function
expects an argument to be
entered in the parentheses when
you use this function. You will be
learning more about functions in
the next tutorial.

Tip: Remember the semicolon
(;) suppresses the output from
the entered line.

 VARIABLES 19

Operator precedence is vital to know, because the result of an operation
can be wildly different than intended if precedence isn’t understood and
addressed. For instance, enter the following two lines into the Com-
mand Window and note the different results:

>> 3 + 2 * 6

>> (3 + 2) * 6

Multiplication has a higher precedence than addition, so the first line is
equivalent to 3 + (2 * 6). Parentheses override precedence, so the second
line first adds 3 + 2 and then multiplies the result by 6. Someone who
understands the precedence rules might use line one, but someone who
assumes that everything is done left-to-right might use the first when they
meant the second. Use parentheses to ensure the correct precedence!

Order of Operations
1. Parentheses
2. Logical negation (~), unary minus (-)
3. Multiplication, division
4. Addition, subtraction
5. Relational operators (<, <=, >, >=, ==, ~=)
6. Logical AND (&)
7. Logical OR (|)

In the case of a tie, operations are usually executed from left to right.
There are many more operators and you can see the full list by searching
for “operator precedence” in the MATLAB help. Scoff now, but if you
do enough programming, you will know the full list by heart one day.

Variables
The concept of a variable is straightforward: a variable holds a value. It has a
name, such as x or city, and that name is assigned a value, such as 3 or ‘Paris’.

Variable Naming Rules
As discussed previously, Matlab variable names are case-sensitive (abc and
Abc are different variables), they can use letters, numbers, and the underscore
character (‘_’) and must begin with a letter. They can be no longer than 63
characters!

Enter the following commands into the MATLAB Command Window
and observe, in particular, the Workspace window. The Workspace
window provides an at-a-glance list of all active variables you’ve
defined, with their values. Some of these commands will cause an error.
Don’t be alarmed.

>> a = 5

>> A = 15

>> a + 3

>> A + 3

Tip: When you provide
an invalid variable name,
MATLAB’s error message
doesn’t specifically say that’s
the problem. Look for errors that
talk about the value to the left
of the equals sign, though there
are others as well.

Tip: You may remember the
mnemonic My Dear Aunt Sally
(multiply divide add subtract)
from elementary school for the
order of arithmetic operations.
MATLAB evaluates arithmetic
operations in that same order.

Tip: Technically, a variable’s
name is an alias for a location
in memory where that value
is stored. Sometimes that is
helpful to remember.

Tip: MATLAB ignores most
white space, so a=3 and
a = 3 are both valid, as is a+3
or a + 3.

Tip: A unary minus is what you
probably know as a negative
sign; for example, -3. “Unary”
means that it only has one
operand.

20 Tutorial 2 PROGRAMMING BASICS: OPERATORS & VARIABLES

>> A + a

>> win_win = 3

>> 2win = 3

>> win-win = 3

>> win.win = 3

Let’s review those last three entries:

Invalid vari-
able name

Result Reason

2win Error: Unexpected
MATLAB expres-
sion.

Variable begins with a number.

win-win Error: The expres-
sion to the left of the
equals sign is not a
valid target for an
assignment.

MATLAB thinks you’re trying to
subtract a variable called win from
itself.

win.win A new structure
called win is created
with a member called
win.

The variable name contains an invalid
character, but it is a valid way to refer
to a member of a structure (a more
advanced data type that we’ll talk
about in a later tutorial). MATLAB
thinks you meant that and creates it.

Effective Variable Names
Strive to write code that is easily understood by another programmer.
Right now, this probably isn’t an issue because you’re doing your work
solo, but in the real world most programs are group efforts. Other
programmers will review your code before adding it to a larger project,
and later programmers will look at it to maintain and upgrade it over
time, possibly when you’re no longer available to consult. One way to
make your code understandable is to use descriptive variable names.
In our examples so far, we’ve stuck to simple one-letter variables that
don’t mean anything. Later, we’ll use variable names that explain the
variable’s purpose and/or units.

For instance, say that you’re working on a simulation for a Mars lander
and need to know the distance from the surface to the lander. You
might name your variable altitude, and that’s not bad (better than x
anyway), but if altitude = 4500, the question “4500 whats?” comes to
mind. An American programmer might assume miles, while a Bulgar-
ian programmer might assume kilometers. At least one of those two is
going to see a spectacular crash. Perhaps altitude_in_meters is a better
name, or altitudeInMeters if that’s your preferred style.

At the same time, don’t get carried away. You’re going to have to type
that variable name over and over, so you’ll quickly learn to keep them
succinct.

Note: Did you notice that
when you entered an invalid
statement, MATLAB tried to
help you out by displaying “Did
you mean:” with a suggested
alternative? If that alternative
is correct, just hit [Enter];
otherwise, backspace the
suggestion away.

Tip: You can drag and drop
variable names from the
Workspace into the Command
Window (and Editor also) to
save having to type them.

 STORING NUMERIC VALUES 21

Storing Numeric Values
All variables have a class or type, which is the sort of data it holds:
numbers, strings, structures, etc. In this section, we’ll talk about variables
that hold numbers. If you remember from math class, integers are whole
numbers (4, 288, 42), while floating-point numbers (also called “real”
numbers) contain decimal values (3.1417, 6.125, 9.9).

Type the following into the Command Window:

>> x = 666

>> class(x)

Hmm. Even though you clearly entered an integer value, MATLAB
created a variable of type double. Unless you explicitly specify the type
of your numeric data, this is MATLAB’s default behavior.

Back to the Command Window, enter these lines:

>> x = int8(666);

>> class(x)

Here, you specifically told MATLAB that you wanted to store the number
666 as an 8-bit integer called x. MATLAB has a function, int8, that
converts the number (or variable) you provide as an argument (the value
in parentheses) to an 8-bit integer. The class function reports back the
class or type.

The number of bits is how many binary digits the value stores. For example, 8
bits can store a binary number such as 11011011. If the sign (positive or nega-
tive) takes up one binary digit, then the value that can be stored is reduced.

27 26 25 24 23 22 21 20

1 1 1 1 1 1 1 1
128 + 64 + 32 + 16 + 8+ 4 + 2 + 1 + = 255

There are several integer types for different levels of size and precision.
Each comes in a signed and unsigned version. If you’re only dealing
with positive integers, using an unsigned type allows you to specify
numbers twice as large.

Integer Types
Type Bits Signed or Unsigned? Range of values
int8 8 signed -128 to 127
uint8 8 unsigned 0 to 255
int16 16 signed -32,768 to 32,767
uint16 16 unsigned 0 to 65,535
int32 32 signed -2,147,483,648 to 2,147,483,647

(Approx. -2.1 to 2.1 billion)
uint32 32 unsigned 0 to 4,294,967,295
int64 64 signed -9,223,372,036,854,775,808 to

9,223,372,036,854,775,807
(Approx. -9.2 to 9.2 quintillion)

uint64 64 unsigned 0 to 18,446,744,073,709,551,615

Tip: The class (variableName)
command is very useful,
particularly in troubleshooting.

Tip: Additional handy functions
are intmin() and intmax().
Supply a type to one of those
functions and MATLAB will tell
you the minimum or maximum
value that type can hold. For
instance, intmax(‘int32’).

Tip: Notice the difference
between int8() and uint8().
The unsigned uint can store a
number twice as large because
it doesn’t have to store the sign.

22 Tutorial 2 PROGRAMMING BASICS: OPERATORS & VARIABLES

Floating-point types can represent numbers so big that they make
an int64 look like something you could count on your fingers. This is
possible because part of their stored value is an exponent. They come in
two varieties: single and double.

Floating Point Types
Type Bits Signed or Unsigned? Range of values
single 32 signed -1.79x1038 to 1.79x1038

double 64 signed -1.79x10308 to 1.79x10308

Constants
A constant is a value that, once assigned, cannot be changed later.
MATLAB doesn’t have a straightforward way for you to declare your
own constants, but it does provide a handful of its own.

There are two special floating-point values to be aware of. You’ll see
these values as the result of an operation. Type the following statements
into the Command Window and watch the result:

>> 3/0

>> inf-inf

In many programming languages, an error results if you attempt to
divide by zero, but not MATLAB. It returns the constant value Inf for
infinity, or -Inf for negative infinity. Inf can be the result of any opera-
tion that results in enormously large or small numbers.

If you’ve tried to perform an operation that is not mathematically
defined, you’ll see the constant value NaN. This means “not a number.”
This isn’t quite a constant by any standard definition, but it isn’t quite
anything else either. In some matrix cases it’s used as a placeholder.

We’ll show you how to make use of these values when we discuss if
statements in a later tutorial. The other constant of note is pi. You’ve
already used it in an earlier tutorial. Try this in the Command Window:

>> format long

>> pi

>> pi + 7

Remember, format long tells the Command Window to display num-
bers with more digits. This is for display purposes only. In calculations,
the full stored number is used.

Exceeding a Type’s Range
Now for a chilling demonstration of where a type can cause things to go
terribly wrong. Enter the following into the Command Window:

>> x = 128 + 2

>> y = int8(128) + 2

>> z = int8(128)

Yikes! 128+2
should not
equal 127

Yikes! 128
should not
equal 127

Tip: You can define a class and
give it the constant property,
but if you are contemplating
that, you are way ahead of this
introductory book.

Tip: Inf and NaN are not case-
sensitive. Inf or inf, as you
please. Imaginary numbers
also have a special constant,
i, used to represent the
imaginary portion of the value.

 NUMERICAL FUNCTIONS 23

Well, that’s not good! Notice in the Workspace that z has a value of 127,
not the 128 you’d specified. If you provide a number larger or smaller
than the type can handle, MATLAB returns the largest or smallest
number that type can provide, with no error. 127 is as high as an int8
can go. This can lead to miscalculations that can be hard to track down.
Be aware of the magnitude of your data versus your data types.

You’re probably wondering why we don’t just use doubles all the time.
You probably can – no harm, no foul. However, if you’re working with
Big Data, you may work with data sets that contain billions of numbers
or more. Code that is optimized for its expected data can prevent
memory overruns and significantly affect run time. It literally can be the
difference between getting results in minutes and getting them in years.

Numerical Functions
As you can imagine, there are almost more built-in MATLAB functions
for manipulating numbers than there are stars in the sky (oh, perhaps a
bit of hyperbole there). Here are some functions you might find useful.

Function Action
ceil Rounds toward positive infinity
floor Rounds toward negative infinity
fix Rounds toward zero
round Rounds toward the nearest whole number
mod (a, b) Returns the modulus of a divided by b. Retains the sign

of the divisor. Example: mod(10, -7) returns -4.
rem (a, b) Returns the remainder in a division operation. Retains

the sign of the dividend. Example: rem(10, -7) returns 3.

Type the following commands into the Command Window and note the
output that results.

Command Window Entry Result
>> ceil(3.4) ans = 4
>> ceil(-3.4) ans = -3
>> floor(3.4) ans = 3
>> floor(-3.4) ans = -4
>> fix(3.4) ans = 3
>> fix(-3.4) ans = -3
>> round(3.4) ans = 3
>> round(-3.4) ans = -3
>> mod(5, 2) ans = 1
>> rem(5, 2) ans = 1
>> mod(5, -2) ans = -1
>> rem(5, -2) ans = 1
>> mod(-5, 2) ans = 1
>> rem(-5, 2) ans = -1

Tip: Functions generally have
some input or “argument” that
they act on. For example:
 ceil (x)
where x is the “argument” or
input that can be provided
to the function. You provide
the input argument inside
parentheses after the function
name. Use MATLAB help to
look up these details when you
use a function. When we write
ceil() it is to remind you that
you will provide an input when
using it. Some functions may
accept multiple arguments,
which may also be left out
depending on the use.

Tip: Don’t forget the
parentheses! Without them
the value 3.4 is assumed to be
three text characters: a 3, a
period, and a 4.
>> ceil(3.4)
 ans = 4
>> class (3.4)
 ans = ‘double’

>> ceil 3.4
 ans = 51 46 52
>> class 3.4
 ans = ‘char’

24 Tutorial 2 PROGRAMMING BASICS: OPERATORS & VARIABLES

There are also conversion functions for every numeric type. For
example int16(43) converts 43 (a double by default) into a 16-bit
integer. One word of warning with these functions: beware of losing
precision and exceeding type ranges in the conversion, particularly
when converting unsigned types to signed types.

Enter the following commands in the Command Window

>> x = uint8(255)

>> y = int8(x)

An int8 can’t hold the number 255, so the number becomes 127. Prob-
ably not what you wanted!

Of course, standard trigonometric functions are available as well, each
in two versions: one which returns the value in degrees and one which
returns the value in radians.

On your own, browse the MATLAB help for Elementary Math
(Figure 2.2) then select Trigonometry from the results to see the
full list of trig functions. Explore the other functions, too.

Figure 2.2

Strings
A string type holds text. An example of a string is this very sentence.
A string can hold any valid character. “123456” can be a string. “< <= >
>=” is another. To discuss strings, we need to talk about arrays. We’ll go
into arrays and matrices in more depth in a later tutorial, so here we’ll
just cover the concepts you need right now.

Array Basics
An array is a collection of data, all of the same type. Each item in the
array has an index by which it can be accessed. Consider the phrase
“Carpe diem.” Each letter, space, and punctuation mark in that phrase
is a character. If you store that string as an array of characters, this is
how it is stored:

Index 1 2 3 4 5 6 7 8 9 10 11
Character C a r p e d i e m .

This a one-dimensional array of 11 characters (1 x 11).

 NUMERICAL FUNCTIONS 25

Type the following lines into the Command Window:

>> st = ‘Carpe diem.’

>> size(st)

>> length(st)

>> st(4)

>> st(4) = ‘9’

>> st(4) = 33

The function size() tells you that it is a 1 x 11 array, while the func-
tion length() simply tells you that the array contains 11 elements. You
accessed a specific element in the array with st(4) and overwrote that
character with st(4) = ‘9’.

The statement st(4) = 33 had the surprising result of overwriting that
element with an exclamation point. This is because all elements in an
array must be of the same type – characters, strings, numbers, and so
forth. The variable st is an array of characters, so you can’t overwrite an
element with a numerical value. Instead, MATLAB assumed that you
wanted ASCII character 33, which is an exclamation point. The Ameri-
can Standard Code for Information Interchange (ASCII) set is a col-
lection of characters, each with its own numerical code, commonly used
in computing to represent letters and symbols (including numbers).
The standard ASCII set includes all the characters you can type on a
US keyboard, each encoded in 7-bits. Extended ASCII sets exist for
characters such as accented, Asian, Arabic, Cyrillic, and Hebrew letters,
scientific and other specialized symbols, and many more.The following
table shows some of the ASCII character set. You can find the entire
sequence on the web.

Tip: The size() function returns
information as rows first, then
columns.

Decimal 7-bit Binary ASCII Character (notes)

 0 0000000 NUL ’\0’

 1 0000001 SOH (start of heading)

 2 0000010 STX (start of text)

 3 0000011 ETX (end of text)

 4 0000100 EOT (end of transmission)

10 0001010 LF ’\n’ (new line)

32 0100000 SPACE

Decimal ASCII

 33 !

 34 "

 35 #

 36 $

 37 %

 38 &

 39 '

 48 0

 49 1

 50 2

 57 9

 58 :

 59 ;

 60 <

 61 =

 62 >

 63 ?

 64 @

 65 A

 66 B

 67 C

 68 D

90 Z

 91 [

 92 \ ’\\’

 93]

 94 ^

 95 _

 96 `

 97 a

 98 b

 99 c

120 x

121 y

122 z

123 {

124 |

125 }

126 ~

127 DEL

26 Tutorial 2 PROGRAMMING BASICS: OPERATORS & VARIABLES

The Two String Types
There are two types of strings: a character array and a string array.
Strings as character arrays are entered by surrounding the text in single
quotes ('the'). Strings as string arrays are entered by surrounding the
text in double quotes ("the"), resulting in an array with one element.

String arrays are new to MATLAB 2017. They are more memory-effi-
cient and have a number of new functions that can be used with them,
as well as using many of the familiar character array functions. Which
you choose in any situation will depend on your programming needs.

Enter the following lines in the Command Window for a whirlwind tour
of some differences between character arrays and string arrays:

>> clc

>> sc = ‘This is a character array’

>> st = “This is a string array”

>> class(sc)

>> class(st)

>> size(sc)

>> length(sc)

>> size(st)

>> length(st)

>> sc(1)

>> st(1)

>> sc(2) = ‘H’;

>> sc

>> st(2) = “And this is the second string in the array”;

>> st

The major difference to remember is that a string as character array is a
1 x length array of individual characters, while a string as a string array
is a 1 x 1 array that contains a single string.

String and Character Functions
MATLAB provides many functions to use with strings and characters.
Here’s a list of some of the most useful. For a complete list and usage
particulars, search for “Characters and Strings” in the MATLAB help.

Function Use with… Action Return
type

ischar any variable type Is this a character array? logical
isstring any variable type Is this a string array? logical
isletter character arrays Which characters are

letters?
logical
array

 NUMERICAL FUNCTIONS 27

isspace character arrays Which characters are
spaces?

logical
array

length character arrays How long is the array? integer
strlength character or

string arrays
How long is each string in
the array?

integer
array

lower character or
string arrays

Convert all letters in the
string to lower-case

string

upper character or
string arrays

Convert all letters in the
string to upper-case

string

strcmp character or
string arrays

Compare two strings for
equality. Use this instead
of =.

logical

strcat character or
string arrays

Add one string to the end
of another

string

startsWith character or
string arrays

Does the string start with a
particular substring?

logical

endsWith character or
string arrays

Does the string end with a
particular substring?

logical

contains character or
string arrays

Does the string contain a
particular substring?

logical

strfind character or
string arrays

What is the starting posi-
tion of a substring?

integer

strtrim character or
string arrays

Remove any spaces from
the beginning and end of
the string

string

replace character or
string arrays

Replace a substring with a
new substring

string

erase character or
string arrays

Remove a substring from
the string

string

insertBefore character or
string arrays

Add a new substring
before a specific point in
the string

string

insertAfter character or
string arrays

Add a new substring after
a specific point in the string

string

split character or
string arrays

Split the string into two or
more substrings

strings

Type the following statements into the Command Window, noting the
form of the functions and the values they return:

>> charArray = ‘This is a character array.’

>> stringArray = “This is a string array.”

>> ischar(charArray)

>> ischar(stringArray)

>> isstring(stringArray)

The results you see in the Command Window are just as you’d expect.

Tip: Keep in mind that
functions and variable names
are case sensitive. The name
“charArray” is not the same as
“Chararray”.

Tip: Several of the string
functions have a separate
version that ignores case.
For instance, strcmp (case-
sensitive) and strcmpi (case-
insensitive).

Tip: Use the MATLAB help to
look up the required format for
these functions when necessary.
For example, the syntax for the
insertBefore is: newStr =
insertBefore(str,endStr,newText).
In this case, str, endStr, newText
are the inputs for the function.

Syntax is like the exact recipe
you must follow for MATLAB
to understand the command
input. We assume you can look
these up in the help when you
need them. What kind of person
memorizes every instance of
every function anyway?

28 Tutorial 2 PROGRAMMING BASICS: OPERATORS & VARIABLES

Now let’s get into trickier stuff. Type the following line into the Com-
mand Window:

>> isletter(charArray)

Interesting. This function returns a numerical array of the same size
as the character array. In each position is a logical value telling you
whether that character is a letter (a-z, A-Z), 1 for true, 0 for false.

Give isspace a try on your own.

Enter this command into the Command Window:

>> upper(stringArray)

Notice that it shouted “THIS IS A STRING ARRAY” back at you in
the Command Window, but the variable stringArray in the Workspace
hasn’t changed. This is because we didn’t assign the returned value back
to a variable. Try this instead:

>> stringArray = upper(stringArray)

Lesson: Just entering the function does not store the value for later use.
If you want to keep the results, use the equals sign and store the result
in a variable (which you can think of as a named storage location)

Now let’s talk about what’s arguably the most important string function:
strcmp. Type the following into the Command Window:

>> text1 = ‘Four score and seven years ago’

>> text2 = ‘87 years ago’

>> text3 = ‘Four score and seven years ago’

>> strcmp(text1, text2)

>> strcmp(text1, text3)

>> text1 == text3

Yipes. And that’s why you need strcmp. The relational equality
operator (==) looks at the string as an array, compares the individual
characters, and returns an array of logical results for each index. The
strcmp function answers the question you’re really asking – “Do these
two variables contain the same text?”

The situation is a little cloudier with string arrays, but the general
advice remains the same: whenever you want to compare two strings,
use strcmp.

Enter the following commands into the Command Window:

>> contains(text1, ‘seven’)

>> strfind(text1, ‘seven’)

The first command tells you that yes, the substring ‘seven’ is in text1
somewhere. The second command tells you where it is – the character ‘s’
of ‘seven’ is at index 16.

Finally, type the following line into the Command Window:

>> insertBefore(text1, strfind(text1, ‘seven’), ‘fifty-’)

Tip: In functions such as
contains and strfind that take
a substring as an argument,
you can use either a character
array (single quotes) or a
string array (double quotes).
MATLAB knows what you
mean and takes care of any
necessary conversions behind
the scenes.

Tip: Use clc to clear the
Command Window on your
own when things get a bit too
messy.

Tip: Use clear when you want
to empty the variables from the
Workspace. This will delete the
values if they are not saved
to a file, so make sure this is
what you want before clearing
the Workspace. You do not
need to use clear to set the
variable to a different value, but
this also means that you can
accidentally overwrite a value
when you reuse a variable
name.

 NUMERICAL FUNCTIONS 29

This command demonstrates two important points. First, a function can
be used like a value within another function. The command is equiva-
lent to the following two commands. We’ll discuss the pros and cons of
both forms when we talk about functions in a later tutorial.

index = strfind(text1, ‘seven’)

insertBefore(text1, index, ‘fifty-’)

The second point the original command made was about nested paren-
theses. This can occur in all kinds of situations and is another common
source of simple coding errors. MATLAB helps you to avoid this by
highlighting the matching opening parenthesis when you type a closing
parenthesis. Also, if you wind up with a mismatched number of opening
and closing parentheses, the error message that results will usually point
you to that as the issue.

MATLAB and Type Flexibility
MATLAB is not a strongly typed language. That means that you can
perform assignments and operations on variables of wildly different
types, usually without causing an error. This can be a blessing in that
you can usually avoid explicitly defining the type for each variable, but
it can be a curse when the result of, say, adding a number to a string, is
puzzling (though it can all be explained).

Type the following commands, and note the results.

>> x = 3

>> class(x)

>> x = ‘I am some text’

>> class(x)

The variable becomes the type of whatever you assign to it, regardless
of what it held before. Not many languages allow that.

Now enter these commands in the Command Window. Use the up arrow
on your keyboard and select from the history to save yourself some typing.

>> x = 3

>> class(x)

>> y = single(5)

>> z = x + y

>> class(z)

>> x = int16(5) + int8(3)

The last line demonstrates that this doesn’t work with integer types,
only floating point types. See Figure 2.3.

30 Tutorial 2 PROGRAMMING BASICS: OPERATORS & VARIABLES

Figure 2.3 Error Resulting from Conflict of Integer Types

Finally, enter the following into the Command Window:

>> x = 3

>> y = ‘I am a string’

>> z = x + y

>> class(z)

>> char(z)

Figure 2.4 Adding Numbers and Letters

MATLAB looked at the string as a character array, added 3 to each
character’s ASCII value, and returned a numerical array of those values
as numbers instead of the characters. The final line, char(z), casts the
array back to a character array-type string based on the ASCII values.
Potential uses in encoding, perhaps – a simple alphabet shift. MATLAB
allows a lot of flexibility, and you can use this in creative ways to accom-
plish interesting solutions. Just make sure you’re doing it on purpose!
Use the functions available to set the data type to prevent problems.

Now that you have been introduced to types and strings, let’s take a look at an
example of importing data into MATLAB and some options for data types.

Genetic Data Example
Humans typically have 23 pairs of chromosomes located in each of
their cells. One of the shorter ones, chromosome 22, has more than 50

 IMPORTING DATA INTO MATLAB 31

million base pair building blocks. Base pair data is encoded by one of
four letters: G, C, A, and T (guanine, cytosine, adenine, and thymine). A
variation in the expected code, or a missing code, may result in health
problems. Customizing medicine for an individual’s specific genetic
variation is a hot topic in improved therapies.

The data file, Chrome22- HG00096.vcf, included in our download, is a
Variant Call Format (vcf) file. It contains information about positions in
the genome and genotype information for each sample. It is a text file
that starts with a header section followed by this required data on each
line:

CHROM: chromosome number. The data file you will use only has
chromosome 22 data.
POS: position. The number that represents the location of the gene on
the chromosome. If you look at the .vcf file you will see that the range
is 1 up to about 1.2 million. (This data should be a number with no
decimal portion.)
ID: identifier. The dbSNP variant is given as an rs number(s). No
identifier should be present in more than one data record. If there is no
identifier available, then the value '.' should be used. (This should be a
string with no white-space or semi-colons permitted.)
REF: reference base(s). Each base allele must be one of A,C,G,T, or N
(meaning aNy of these.) This data is not case-sensitive. More than one
base letter is allowable. The value in the POS field gives the position
of the first base in the string. Gene variations may have insertions or
deletions in which either the REF or the ALT alleles are null/empty.
POS denotes the coordinate of the base preceding the polymorphism (a
big word meaning there can be several different forms, one of the things
you would be searching for in genetic variation). (This required data
should be a string.)
ALT: alternate base(s). Similar to REF, but for alternate non-reference
alleles. These alleles do not have to be called in any of the samples.
Options are A,C,G,T,N, or *. The '*' is used to indicate that the allele is
missing due to an upstream deletion.
QUAL: quality. Quality score based on the Phred-scale. Our data all has
100 for the quality. You can read more about this topic on your own or
in a statistics class.
FILTER: filter status. “PASS” indicates the quality score is passing.
INFO: additional information. Keys such as AA (ancestral allele), AC
(allele count in genotypes), and AF (allele frequency) are often used,
but others are permitted.
Any other columns in the data file are optional. So now you know a bit
about .vcf files, so let’s get to importing one into MATLAB.

Importing Data into MATLAB
MATLAB has a handy feature for importing data using the Import
Data tool. You can also use readtable, csvread, dlmread, textscan,
imread, and other command entries. For this example, we will use the
Import Data tool from the Home tab of the ribbon.

Tip: Don’t worry, nobody
is going to test you on your
knowledge of genetics or vcf
files here. We are just going to
import some data from a large
file and check out some things
about data types. It’s fun to look
at real data and who knows,
maybe you will go find a cure for
cancer or schizophrenia in your
spare time.
You can read more about
rs numbers in genetics at
en.wikipedia.org/wiki/DbSNP
and many other places.
The variation viewer at www.
ncbi.nlm.nih.gov/variation/view
is a great tool for exploring
genetic information.

Tip: Can’t remember which
letters are in the genetic code?
Make up a mnemonic, like
GAG-A-CAT. Its all Gs, As, Cs
and Ts. The N is for aNy.

32 Tutorial 2 PROGRAMMING BASICS: OPERATORS & VARIABLES

Click: Import Data from the ribbon Home tab

Figure 2.5 Ribbon Home Tab with Import Data Tool

Figure 2.6 File Browser

On your own, change the file type to All Files (*.*) at the bottom
right of the browser window, to show the .vcf file.

Use the file browser to locate and open the data file Chrome22-
HG00096.vcf OR use the smaller data file named Chrome22-small.
vcf if your system will not handle larger files easily.

The import data window opens on your screen similar to Figure 2.7. It
shows a view of the data similar to spreadsheets you may have used.

Figure 2.7 Data to Be Imported

WARNING: The file you will
import from has more than 1
million rows in it. If you are not
working on a fast computer
system, use the smaller data
file instead.

Show all files

 IMPORTING DATA INTO MATLAB 33

Text Options
Notice under the drop down for Text Options, there are options to
create a String Array or a Cell Array of Character Vectors, similar to
entering strings using either double-quotes ("string array") or single-
quotes ('character array').

Leave the Text Type set to String Array.

Figure 2.8 Output File Options

Output Type
Our data will work best as a table which has rows and columns, but
column vectors, numeric matrix, and our old friend the string array and
cell array are available options for data that would be suited to those.

Leave Table set as the Output Type.

Delimiters
Notice there are also options that allow you to select whether your data
has delimiters, such as commas or tabs, between the entries. Our data
does, so leave this set to Tab delimited. The other option is to have a
fixed width of characters for each entry. This is useful when each entry
is always the same length, like a list of numbers or when the data itself
contains commas or tabs and you don’t want the columns based on those.

Variable Names Row
This option lets you select a heading row to generate the variable
names used for the columns of the table. We will use row 6, which
contains headings CHROM, POS, ID, ALT, QUAL, FILTER, etc.

On your own set Variable Names Row to row 6.

Range
You don’t have to use all of the data in your giant file. The COMT gene
is associated allele variants such as rs4680, rs737865, and rs165599 which
may be associated with response to antidepressants among other things.

The COMT gene is located starting at 19,941,740 up to 19,969,975, so
we will extract only a section of the data around this gene to keep the
imported file smaller, just for this project. We’ve already figured out
which rows are near this region to make this easier.

On your own, set the Range to A106710:J107844.

Tip: If you used the short file,
then select the entire range of
the data.

34 Tutorial 2 PROGRAMMING BASICS: OPERATORS & VARIABLES

When the file is imported, only those rows (106710 to 107844) and
columns (A-J) will be used in the MATLAB table.

Import Selection Options
Now you are ready to import the data into MATLAB, where you
will see it as a new variable in the Workspace. Notice that the Import
Selection button has a small triangle at the bottom that you can click to
expand to see more options.

We will use Import Data, but you can also use this to generate a script,
which you used in an earlier tutorial, or a function, which you will learn
about in a later tutorial. This is very handy if you must convert multiple
data files. We are just doing this once, so...

Click: Import Selection

The data is imported to the MATLAB table and appears in the Work-
space as shown in Figure 2.9.

Figure 2.9 Table Imported in Workspace

Double-click: Chrome22HG00096 in the Workspace list

The table of imported data opens and the Command Window shows below
it. Now you can enter MATLAB commands to interact with the data.

On your own, click and drag on the divider to resize the
Command Window larger.

Enter the following command at the prompt to sort the data by 'ID'’,
the variable heading for row 3.

>> tblIDs = sortrows(Chrome22HG00096,'ID')

The table information displays in the Command Window, sorted by the
ID column values. Notice the new variable, tblIDs, in the Workspace.

Tip: The Import Data tool
generates a script that you
can edit and run to import files.
This is a handy way to import
multiple files with similar data
quickly.

Tip: If you used the short file,
then the variable names will be
in row 1.

 IMPORTING DATA INTO MATLAB 35

Right-click on
the name

Figure 2.10 Sorted Data in Command Window

Remember that unless you save the imported file will not be saved
when you either clear your variable list or exit MATLAB. Here’s
another way to save a file.

Right-click: Chrome22HG00096 in the Workspace.

Use the context menu to select Save As...

Browse to your Work folder and save the file with the name
Chrome22data.mat as shown in Figure 2.11.

Figure 2.11 Saving the File

Congrats! You have finished Tutorial 2.

Tip: Check out the interface
and notice some other ways
you could sort this table.

36 Tutorial 2 PROGRAMMING BASICS: OPERATORS & VARIABLES

Key Commands
&&

|

and

ceil

class

contains

csvread

dlmread

endsWith

erase

fix

floor

format

imread

insertAfter

insertBefore

int16

int8

ischar

isletter

islogical

isspace

isstring

length

length

logical

lower

mod

not

or

readtable

rem

replace

round

size

split

startsWith

strcat

strcmp

strfind

strlength

strtrim

textscan

upper

xor

Key Terms
argument

arithmetic operators

array

ascii character

assigment statement

character array

class

constant

double

equal sign operators

floating-point types

index

Inf

-Inf

integer types

logical operators

logical type

NaN

operator precedence

pi

relational operators

signed

string

string array

trigonometric functions

unsigned

variable

Exercises

Exercise 2.1
Based on operator precedence, predict the result of the calculation

below without using Matlab. Once you think you know the answer,
enter the statement in the Command Window. Do your answers agree?

5 + 2 * 8 / 2 - (3 * 2 + 10) / -1

 EXERCISES 37

Exercise 2.2

Predict the value of z after the following statements:

x = 1

y = 5

z = ~(x < y || ~(y < x) && islogical(x))

Enter the commands above into the Command Window. Was your pre-
diction correct? You have a 50:50 chance of getting it right, so make sure
that if your prediction was correct, it was correct for the right reasons.

Exercise 2.3

Predict both the value and the data type of x in this equation:

x = 55 + uint32(-22) + pi

Enter the command in the Command Window. Were you right? What
does this equation demonstrate about variable types?

Exercise 2.4

Predict the value of each of these commands:

int8(ceil(127.1))

int8(floor(127.9))

int8(fix(127.5))

int8(round(127.7))

int8(ceil(rem(-528.6,200)))

Enter the commands in the Command Window and compare each
result to your prediction. If you were mistaken on any, enter them in
parts from the center outward, such as ceil(127.1) then int8(ceil(127.1)),
to see where the number did something you didn’t expect.

Exercise 2.5

Predict what you expect to see (generally, not precisely) as a result
of the last two lines of this set of commands:

x = 'small kittens'

y = "small kittens"

3 + x

3 + y

38 Tutorial 2 PROGRAMMING BASICS: OPERATORS & VARIABLES

Exercise 2.6

List the data type you would be likely to use to store the following
information in a Matlab program. Briefly explain your answers.

a. firstname, lastname, and middle initial of people for a list
which you may sort later by either first name or last name.
Some people may not have middle initials.

b. average homework scores on a test.

c. seat numbers in a 800 seat theater.

d. the number of base pairs in the humane genome.

e. words for an automated poetry generating algorithm.

f. comment entries from web site users.

g. a list of answers for a true/false style test.

h. a list of anwers for a multiple choice test with four choices.

Exercise 2.7

Use Matlab to calculate answers to the following: Carpet cost
$1.69 / ft2 and comes on a roll that is 12 feet wide. For each room,
calculate the cost of the carpet and percentage of wasted carpet:

a. 8’ x 11’

b. 14’ x 9 ‘

c. 12 x 8’-6”

d. 18’ x 13’

Exercise 2.8

The Great Pacific Garbage Patch (GPGP) is a zone of plastic
debris accumulated in the ocean between California and Hawaii. A ship
and aircraft survey predicted about 79,000 tons of plastic are floating
inside an area of 1.6 million km2. This survey estimates 75% of the mass
was from pieces larger than 5 cm, microplastics accounted for only 8%
of the total mass but 94% of the estimated 1.8 trillion pieces of floating
plastic in the GPGP. Use Matlab to estimate the following:

a. the average weight of a piece of plastic debris in the GPGP.

b. the average number of pieces of plastic debris in one square
mile of the GPGP.

c. the volume in square yards of the GPGP if it were con-
densed into one solid mass; base your estimate on a density
of plastic at 1.20 grams per cubic centimeter.

