
PROGRAMMING AND
ENGINEERING COMPUTING WITH

Huei-Huang Lee

MATLAB 2020 ®

SDC
P U B L I C AT I O N S www.SDCpublications.com

Better Textbooks. Lower Prices.

https://www.sdcpublications.com

Visit the following websites to learn more about this book:

Powered by TCPDF (www.tcpdf.org)

https://www.sdcpublications.com/Textbooks/Programming-Engineering-Computing-MATLAB-2020/ISBN/978-1-63057-397-3/
https://www.amazon.com/gp/product/1630573973?ie=UTF8&tag=sdcpublications&linkCode=as2&camp=211189&creative=374929&creativeASIN=1630573973
http://books.google.com/books?vid=ISBN1630573973&printsec=frontcover
http://www.barnesandnoble.com/s/1630573973?dref=1&keyword=1630573973
http://www.tcpdf.org

Data Types, Operators, and Expressions
Chapter 2
 Chapter 2 Data Types, Operators, and Expressions 68

 2.1 Unsigned Integers 69
 2.2 Signed Integers 72
 2.3 Floating-Point Numbers 74
 2.4 Character and Strings 78
 2.5 Logical Data 81
 2.6 Arrays 84
 2.7 Sums, Products, Minima, and Maxima 89
 2.8 Arithmetic Operators 92
 2.9 Relational and Logical Operators 99
 2.10 String Manipulations 102
 2.11 Expressions 105
 2.12 Example: Function Approximations 108
 2.13 Example: Series Solution of a Laplace Equation 113
 2.14 Example: Deflection of Beams 115
 2.15 Example: Vibrations of Supported Machines 117
 2.16 Additional Exercise Problems 121

An expression is a syntactic
combination of numbers,
variables, operators, and
functions. An expression
always results in a value. The
right-hand side of an
assignment statement is always
an expression. You may notice
that most of the statements we
demonstrated in Chapter 1 are
assignment statements. It is
fair to say that expressions are
the most important building
block of a program.

[1] The figure below shows the classification of the 12 basic data types (highlighted with shaded boxes) in MATLAB.
We called them "basic" since they are implemented in a computer's hardware level; all other data types (e.g., array, cell
array, structure, etc.) in MATLAB are implemented in some software levels on the top of these basic data types. By
default, MATLAB assumes double for all numbers. For example,

a = 75

where the number 75 is treated as a double; therefore a variable a of the type double is created to store the number.
To create a number of a type other than double, you must explicitly use a data type conversion function; e.g.,

b = int8(75)

where the right-hand-side is an int8; therefore, a variable b of the type int8 is created to store the number. You may
verify the types (or called classes) of the variables a and b by typing the command whos,

>> whos

 Name Size Bytes Class

 a 1x1 8 double

 b 1x1 1 int8

This information can be displayed in the Workspace Window (see [2-3], next page). Note that 8 bytes of the memory
are needed to store a double, while only 1 byte (8 bits) is needed to store an int8. But how? Starting from this
section, we'll provide some exercises through which you will not only learn how these basic data are stored in the
memory (i.e., how they are represented with 0s and 1s) but also learn some useful programming techniques.

Basic Data Types Numeric

char

Integer Numbers

Floating-Point Numbers double

single

signed

unsigned

int8

int16

int32

int64

uint8

uint16

uint32

uint64

logical

 2.1 Unsigned Integers 69

2.1 Unsigned Integers

 2.1 Unsigned Integers 70

Unsigned Integers
[4] Computer representation of unsigned integers is straightforward. For example, the decimal number 75 is represented
by a binary number 01001011. A binary number can be converted to a decimal number by treating 1 at the nth digit as
2n−1. Thus, the binary number 01001011 is converted to a decimal number 75 as following:

(0 × 27 +1× 26 + 0 × 25 + 0 × 24 +1× 23 + 0 × 22 +1× 21 +1× 20)10 = 7510
On the other hand, the decimal number 75 can be converted into the binary number by successive divisions of 2:

 75 divided by 2 is 37, remainder 1
 37 divided by 2 is 18, remainder 1
 18 divided by 2 is 9, remainder 0
 9 divided by 2 is 4, remainder 1
 4 divided by 2 is 2, remainder 0
 2 divided by 2 is 1, remainder 0
 1 divided by 2 is 0, remainder 1

After collecting the remainders bottom-up, you have the binary number 1001011 (which is equal to 01001011).
 In general, a binary number bn−1bn−2 ... b1b0 (where each of bn−1, bn−2 , ... , b1, and b0 is a binary digit (bit), either 0 or
1) is converted into a decimal number by

(bn−1 × 2
n−1 + bn−2 × 2

n−2 + ...+ b1 × 2
1 + b0 × 2

0)10 ≡ bk × 2
k

k=0

n−1

∑���
�

	 10

 Obviously, the minimum value an unsigned integer can represent is zero; i.e., an unsigned integer cannot represent
a negative number. The maximum value an unsigned integer can represent depends on how many binary digits (bits) it
uses. For example, the maximum value for an 8-bit unsigned integer (uint8) is

(11111111)2 = (2
8 −1)10 = 25510

In general, when n bits are used, the maximum value an unsigned integer can represent is (2n −1)10 .
 Table 2.1 (next page) lists information about the four unsigned integer types in MATLAB, including their
conversion functions, their minimum/maximum values, and the functions to find these minimum/maximum values.

[2] Additional information of the variables in the
Workspace can be displayed by pulling down this button
and selecting Choose Columns. For the rest of the book,

we set up the Workspace Window like this. ←

[3] This symbol
indicates a numeric

type, either a scalar or
an array.

70 Chapter 2 Data Types, Operators, and Expressions

 2.1 Unsigned Integers 71

Table 2.1 Unsigned Inteeger Numbers
Conversion

Function
Function to find the

minimum value Minimum value Function to find the
maximum value Maximum value

uint8 intmin('uint8') 0 intmax('uint8') 255

uint16 intmin('uint16') 0 intmax('uint16') 65535

uint32 intmin('uint32') 0 intmax('uint32') 4294967295

uint64 intmin('uint64') 0 intmax('uint64') 18446744073709551615

Details and More: Help>MATLABB>Language Funddamentals>Data Types>Nummeric Types

Example02_01.m: Unsigned Integers
[5] These statements demonstrate the concepts given in the last page. A Command Window session is shown in [6].

� 1� clear

� 2� d = 75

� 3� u = uint8(d)

� 4� bits = dec2bin(u)

� 5� number = bin2dec(bits)

[6] This is a Command
Window session of

Example02_01.m.

About Example02_01.m
[7] In line 2, the number 75 is treated as a double by default; therefore, a variable d of the type double is created to
store the number. An 64-bit floating-point representation, to be discussed in Section 2.3, is used for double data.
 In line 3, the function uint8 converts the number d to an 8-bit unsigned integer format (without altering the value
75), and a variable u of the type uint8 is created to store the number.
 In line 4, the function dec2bin converts the decimal number u to a character string bits representing binary
number. The bit pattern in lines 15-16 is consistent with that in [4], last page. Note that, in line 16, leading zeros are not
present. In line 5, the function bin2dec converts the character string bits back to the decimal number 75 (see lines
18-19). Both the functions dec2bin and bin2dec convert numbers using the procedure described in [4], last page. #

� 6� >> clear

� 7� >> d = 75

� 8� d =

� 9� 75

�10� >> u = uint8(d)

�11� u =

�12� uint8

�13� 75

�14� >> bits = dec2bin(u)

�15� bits =

�16� '1001011'

�17� >> number = bin2dec(bits)

�18� number =

�19� 75

 2.2 Signed Integers 72

2.2 Signed Integers

72 Chapter 2 Data Types, Operators, and Expressions

[1] With 8 bits, the positive integer 75 is represented by 01001011. How
to represent the negative integer -75? A simple idea is to use a bit as the
"sign bit." For example, we might use the leftmost bit as the sign bit: 0
for positive and 1 for negative. Thus, if 01001011 represents +75, then
11001011 represents -75. A problem of this representation is that both
00000000 and 10000000 represent the same number, zero. Another
problem is that two numbers with the opposite signs can not be added in
a simple way; e.g., 01001011 + 11001011 = 00010100, which is not
correct; adding -75 to 75 should result in zero.

One's Complement Representation
Another idea is to use one's complement representation. It also uses a
sign bit as before: 0 for positive and 1 for negative. If the sign bit
indicates that it is a negative number, then its complement pattern (i.e.,
converting 0s to 1s and 1s to 0s) is interpreted as its absolute value. For
example, since the leftmost bit of 10110100 indicates that it is a negative
number, its complement pattern 01001011 (7510) is interpreted as its
absolute value. Thus, the bit pattern 10110100 is interpreted as -75.
Many early computers used this method (Wikipedia> One's
Complement). One of the previous problems still exists with this
approach: both 00000000 and 11111111 represent the same number, zero.

Two's Complement Representation
Modern computers use two's complement representation. It also uses
a sign bit as before. If the sign bit indicates that it is a negative number,
then its two's complement pattern (i.e., adding one to its complement
pattern) is used to represent its absolute value. For example, since the
leftmost bit of 10110101 indicates that it is a negative number, we take
its complement (01001010), add one (01001011, which has a decimal
value of 75), and interpret the bit pattern 10110101 as -75. Thus,
00000000 represents zero, and 11111111 represents -1. Table 2.2a gives
some examples of unsigned/signed representation.

Table 2.2a
Rep

a Unsigned
presentatio

d/Signed
on

Bit pattern Unsigned
value

Signed
value

000 0 0

001 1 1

010 2 2

011 3 3

100 4 -4

101 5 -3

110 6 -2

111 7 -1

00000000 0 0

11111111 255 -1

01111111 127 127

10000000 128 -128

De
Wikipedi

tails and More
a>Two's comp

e:
plement

Tablee 2.2b Signed Integger Numbers
Conversion

Function
Function to find the

minimum value Minimum value Function to find the
maximum value Maximum value

int8 intmin('int8') -128 intmax('int8') 127

int16 intmin('int16') -32768 intmax('int16') 32767

int32 intmin('int32') -2147483648 intmax('int32') 2147483647

int64 intmin('int64') -9223372036854775808 intmax('int64') 9223372036854775807

DDetails and More: Help>MMATLAB>Language Fundammentals>Data Types>Nummeric Types

 2.2 Signed Integers 73

Example02_02.m: Signed Integers
[3] These statements demonstrate some concepts about
signed integers. A Command Window session is shown
in [4]. →

� 1� clear
� 2� d = 200
� 3� u = uint8(d)
� 4� bits = dec2bin(u)
� 5� t = int8(u)
� 6� s = typecast(u, 'int8')
� 7� a = int16(u)
� 8� bits = dec2bin(a)

[4] This is a Command
Window session of

Example02_02.m.

About Example02_02.m
[5] Lines 1-3 are similar to those in Example02_01.m, page 71. Now, the variable u, an 8-bit unsigned integer, has a
value of 200, which has a bit pattern 11001000, confirmed in line 4 (also see line 19).
 In line 5, the value 200 is converted to an int8; however, since the maximum value of an int8 is 127 (see Table
2.2b, last page), the value is "overflown" and only the maximum value (127) is stored in an int8. Therefore, the
variable t has a value of 127 (see lines 21-23).
 In line 6, the function typecast preserves the bit pattern of the unsigned value 200 (11001000) while changing its
type to int8. Now, the bit pattern is interpreted as a value of -56 (see lines 25-27), using two's complement
representation: Since the leftmost bit of 11001000 indicates that it is a negative number, we take its complement
(00110111), add one (00111000, which has a decimal value of 56), and interpret the bit pattern 10110101 as -56.
 To store the value 200 in a signed integer, we need at least an int16. Line 7 successfully converts the value 200 to
an int16 and stores it in the variable a (also see lines 29-31); line 8 confirms that the bit pattern of u is preserved in a
(also see lines 33-34). #

� 9� >> clear
�10� >> d = 200
�11� d =
�12� 200
�13� >> u = uint8(d)
�14� u =
�15� uint8
�16� 200
�17� >> bits = dec2bin(u)
�18� bits =
�19� '11001000'
�20� >> t = int8(u)
�21� t =
�22� int8
�23� 127
�24� >> s = typecast(u, 'int8')
�25� s =
�26� int8
�27� -56
�28� >> a = int16(u)
�29� a =
�30� int16
�31� 200
�32� >> bits = dec2bin(a)
�33� bits =
�34� '11001000'

Minimum/Maximum Values
[2] From Table 2.2a (last page), with 8 bits, the
minimum signed value is 10000000 (−12810) and the
maximum value is 01111111 (12710) . In general, when
n-bits are used, the minimum value is −2n−1 and the
maximum value is 2n−1 −1 . Table 2.2b (last page) lists
information about the four signed integer types in
MATLAB, including their conversion functions, their
minimum/maximum values, and the functions to find
these minimum/maximum values.

[1] Your computer uses floating-point representation to store real numbers. MATLAB has two types of floating-point
numbers: double precision (double) and single precision (single); a double uses 8 bytes (64 bits) of memory
while a single uses 4 bytes (32 bits). As mentioned, double is the default data type and, therefore, is the most
extensively used data type. Table 2.3a (next page) lists information about the two floating-point types, including their
conversion functions, their minimum/maximum values, and the functions to find these minimum/maximum values.

Floating-Point Representation
The figure below (source: https://en.wikipedia.org/wiki/File:IEEE_754_Double_Floating_Point_Format.svg, by
Codekaizen) shows an example bit pattern of a double-precision floating-point number. It uses 64 bits in computer
memory: 1 bit (the 63rd bit) for the sign, 11 bits (the 52nd-62nd bits) for the exponent, and 52 bits (the 0th-51st bits) for
the fraction. The 64-bit pattern is interpreted as a value of

(−1)sign (1. b51b50 ... b0)2 × 2exponent−1023

Thus, the bit pattern below is interpreted as

 +(1. 11)2 × 21027−1023 = (20 + 2−1 + 2−2)× 24 = 1.75 ×16 = (28)10

0 1 0 0 0 0 0 0 0 0 1111 0

 2.3 Floating-Point Numbers 74

2.3 Floating-Point Numbers

Fractional Binary Numbers
[2] For those who are not familiar with the binary numbers, here is another example. A decimal number 258.369 is
interpreted as

(258.369)10 = 2 ×10
2 + 5 ×101 + 8 ×100 + 3×10−1 + 6 ×10−2 + 9 ×10−3

Similarly, a binary number 1101.01101 can be interpreted as

(1101.01101)2 = 1× 2

3 +1× 22 + 0 × 21 +1× 20 + 0 × 2−1 +1× 2−2 +1× 2−3 + 0 × 2−4 +1× 2−5

= 8 + 4 + 0 +1+ 0 + 0.25 + 0.125 + 0 + 0.03125
= (13.40625)10

74 Chapter 2 Data Types, Operators, and Expressions

2.3a Floating-Point Numbers

 2.3 Floating-Point Numbers 75

Table 2.3a Floating-Poiint Numbers
Conversion

Function
Function to find the

minimum value Minimum value Function to find the
maximum value Maximum value

double realmin('double') 2.2251e-308 realmax('double') 1.7977e+308

single realmin('single') 1.1755e-38 realmax('single') 3.4028e+38

DDetails and More: Help>MATLLAB>Language Fundaamentals>Data Types>Numeric Types

Example02_03a.m: Floating-Point Numbers
[3] These statements confirm that the decimal number 28 is indeed represented by the bit pattern in [1], last page. A
Command Window session is shown in [4].

� 1� clear

� 2� d = 28

� 3� a = typecast(d, 'uint64')

� 4� b = dec2bin(a, 64)

Line 2 creates a double-precision floating-point number 28 and stores it in the variable d. The bit pattern should be like
the one in [1], last page.
 In line 3, the function typecast preserves the 64-bit pattern while changing its type to uint64. Now, the bit
pattern is interpreted as a value of 4628574517030027264 (see line 12), which can be calculated by

262 + 253 + 252 + 251 + 250 = 4628574517030027264

 Line 4 demonstrates another way (than using bitget and fliplr) to display the bit pattern. The function
dec2bin(a,64) retrieves the bit pattern from an integer number a and outputs the bit pattern in a text form (i.e., a
string, to be introduced in the next section). The result is shown in line 15, the same as the one in [1], last page.

� 5� >> clear

� 6� >> d = 28

� 7� d =

� 8� 28

� 9� >> a = typecast(d, 'uint64')

� 10� a =

� 11� uint64

� 12� 4628574517030027264

� 13� >> b = dec2bin(a, 64)

� 14� b =

� 15� '0100000000111100'

� 16� >>

[4] This is a Command
Window session of

Example02_03a.m. #

 2.3 Floating-Point Numbers 76

Screen Output Format
[3] Lines 2, 3, and 6 set Command Window output display format. The syntax is

format style

The short (line 2) sets the display of fixed-decimal format 4 digits after the decimal point, the long (line 6) 15 digits
after the decimal point. The compact (line 3) suppresses blank lines to make the output lines compact (also see
1.2[9-10], page 14). The opposite of compact is loose (default), which adds blank lines to make the output lines
more readable. In this book, we always use compact style to save space.
 Table 2.3b (next page) lists available format styles. Remember, you may always consult the on-line documentation
whenever a new command is encountered. For example:

>> doc format

Double Precision Floating-Point Numbers
In line 4, we assign a number of 24 significant figures to the variable a of double. We will see that, due to the limited
storage space (64 bits), not all the figures can be stored in the variable a. The number is displayed (line 15) in short
format, i.e., 4 digits after the decimal point. Note that, in displaying the number, it is rounded to the last digit.
 In line 5, we attempt to print the number with 20 digits after the decimal point. The result (line 17) shows that only
the first 16 digits are the same as what was assigned to the variable a. The extra digits are lost due to the limited storage
space. We conclude that a double-precision floating point number has 16 significant digits.
 With long format (line 6), the number is displayed with 15 digits after the decimal point (lines 7, 21). Note that,
again, in displaying the number, it has been rounded to the last digit.

Example02_03b.m: Siginificant Digits of
Floating-Point Numbers
[1] These statements explore the number of significant
digits of floating-point numbers. A Command Window
session is shown in [2], next page. →

� 1� clear

� 2� format short

� 3� format compact

� 4� a = 1234.56789012345678901234

� 5� fprintf('%.20f\n', a)

� 6� format long

� 7� a

� 8� b = single(a)

� 9� fprintf('%.20f\n', b)

� 10� >> clear

� 11� >> format short

� 12� >> format compact

� 13� >> a = 1234.56789012345678901234

� 14� a =

� 15� 1.2346e+03

� 16� >> fprintf('%.20f\n', a)

� 17� 1234.56789012345689116046

� 18� >> format long

� 19� >> a

� 20� a =

� 21� 1.234567890123457e+03

� 22� >> b = single(a)

� 23� b =

� 24� single

� 25� 1.2345679e+03

� 26� >> fprintf('%.20f\n', b)

� 27� 1234.56787109375000000000

[2] This is a Command
Window session of

Example02_03b.m.

76 Chapter 2 Data Types, Operators, and Expressions

2.3b Significant Digits of Floating-Point Numbers

Table 2.3b Nummeric Output Format
Function Description or Example

format compact Suppress blank lines

format loose Add blank lines

format short 3.1416

format long 3.141592653589793

format shortE 3.1416e+00

format longE 3.141592653589793e+00

format shortG short or shortE

format longG long or longE

format shortEng Exponent is a multiple of 3

format longEng Exponent is a multiple of 3

format + Display the sign (+/-)

format bank Currency format; 3.14

format hex 400921fb54442d18

format rat Rational; 355/133

Details and MMore: >> doc format

Single-Precision Floating-Point Numbers
[4] Line 8 converts the value stored in the variable a (which is of type double, 64-bit long) to a single-precision
floating-point number (32-bit long). The output (line 25) shows that it reduces to 8 significant digits, due to the shorter
storage space. The extra digits are discarded during the conversion. This is also confirmed with line 9; its output in line
27 is accurate up to the 8th digits. We conclude that a single-precision floating point number has 8 significant digits. #

 2.3 Floating-Point Numbers 77

 2.4 Characters and Strings 78

2.4 Characters and Strings

ASCII Codes
[1] In MATLAB, a character is represented using single
quotes; e.g., 'A', 'b', etc. Internally, MATLAB uses 2
bytes (16 bits) to store a character according to ASCII
Code (see Wikipedia>ASCII, also see 2.4b, page 80). An
ASCII code is a number representing a character, either
printable or non-printable. The ASCII codes of the
characters 'A', 'B', and 'C' are 65, 66, and 67,
respectively. A character can be converted to a numeric
value according to ASCII Codes. For example, since
'A' is internally represented by an ASCII code 65,
double('A') results in a number 65.
 The most frequently used non-printable character is
the newline character (1.9[9], page 35). MATLAB uses
'\n' to represent the newline character.
 The notation such as 'ABC' is used to represent a
row vector of characters; i.e., it is equivalent to ['A',
'B', 'C']. A row vector of characters is also called a
string.

Example02_04a.m: Characters
[2] These statements demonstrate some concepts about
characters and strings. A Command Window session
is shown in [3] and the Workspace is shown in [4-5],
next page. →

� 1� clear
� 2� a = 'A'
� 3� b = a + 1
� 4� char(65)
� 5� char('A' + 2)
� 6� c = ['A', 'B', 'C']
� 7� d = ['AB', 'C']
� 8� e = ['A', 66, 67]
� 9� f = 'ABC'
�10� f(1)
�11� f(2)
�12� f(3)

� 13� >> clear

� 14� >> a = 'A'

� 15� a =

� 16� 'A'

� 17� >> b = a + 1

� 18� b =

� 19� 66

� 20� >> char(65)

� 21� ans =

� 22� 'A'

� 23� >> char('A' + 2)

� 24� ans =

� 25� 'C'

� 26� >> c = ['A', 'B', 'C']

� 27� c =

� 28� 'ABC'

� 29� >> d = ['AB', 'C']

� 30� d =

� 31� 'ABC'

� 32� >> e = ['A', 66, 67]

� 33� e =

� 34� 'ABC'

� 35� >> f = 'ABC'

� 36� f =

� 37� 'ABC'

� 38� >> f(1)

� 39� ans =

� 40� 'A'

� 41� >> f(2)

� 42� ans =

� 43� 'B'

� 44� >> f(3)

� 45� ans =

� 46� 'C'

[3] This is a Command
Window session of

Example02_04a.m.

78 Chapter 2 Data Types, Operators, and Expressions

2.4a Characters and Strings

About Example02_4a.m
[6] In line 2, a character A is assigned to a variable a, which is of type char (line 16).
 In line 3, since + (plus) is a numeric operator, MATLAB converts the variable a to a numeric value, 65, and then
adds 1. The result is 66 and the variable b is of numeric type, a double (line 19).
 In line 4, the numeric value 65 is converted to a char, using the function char. The result is the character
'A' (line 22).
 In line 5, again, since + (plus) is a numeric operator, MATLAB converts the character 'A' to a numeric value, 65,
and then adds 2. The result is 67, which, after converting to char type, is the character 'C' (line 25).

Numeric Operations Involving Characters
A numeric operator (+, -, etc.) always operates on numeric values, and the result is a numeric value. If a numeric
operation involves characters, the characters are converted to numeric values according to ASCII codes.
 We'll introduce numerical operations in Section 2.7 and Section 2.8 and string manipulations in Section 2.10.

String: Row Vector of Characters
Line 6 creates a row vector of three characters 'A', 'B', and 'C'. It is displayed as 'ABC' (line 28). A row vector of
character is also called a string. The variable c is a string.
 Line 7 seemingly creates a row vector of two elements. However, since 'AB' itself is a row vector of two
characters, the result is a row vector of three characters 'ABC' (line 31). There is no difference between variables c
and d; both are strings of three characters 'ABC'.
 In line 8, since an array must have elements of the same data type and since there is a character in the array,
MATLAB converts the number 66 and 67 to characters according to ASCII Codes. The result is a row vector of three
characters 'ABC'. There is no difference between variables c, d, and e.
 Line 9 demonstrates an easy way to create a vector of characters, a string. There is no difference between the
variables c, d, e, and f. They are all vectors of three characters ABC, confirmed in lines 10-12.

The Variable ans
In lines 4-5 and 10-12, there are no variables to store the result of the expressions. Whenever there is no variable to
store the resulting value of an expression, MATLAB always uses the variable ans (short for answer) to store that value
(also see lines 21, 24, 39, 42, 45). #

 2.4 Characters and Strings 79

[4] This symbol
indicates a

character type. ↙

[5] Remember that this symbol
indicates a numeric type

(2.1[3], page 70).

Example02_04b.m: ASCII Codes
[1] MATLAB stores characters according to ASCII Code. ASCII codes
32-126 represent printable characters on a standard keyboard. This
example prints a table of characters corresponding to the ASCII Codes
32-126 (see the output in [2]). →

� 1� clear
� 2� fprintf(' 0 1 2 3 4 5 6 7 8 9\n')
� 3� for row = 3:12
� 4� fprintf('%2d ', row)
� 5� for column = 0:9
� 6� code = row*10+column;
� 7� if (code < 32) || (code > 126)
 �8� fprintf(' ')
 �9� else
 �10� fprintf('%c ', code)
 �11� end
 �12� end
 �13� fprintf('\n')
�14� end

[2] This is the output of
Example02_04b.m. Note that
ASCII Code 32 corresponds to

the space character.

 0 1 2 3 4 5 6 7 8 9
 3 ! " # $ % & '
 4 () * + , - . / 0 1
 5 2 3 4 5 6 7 8 9 : ;
 6 < = > ? @ A B C D E
 7 F G H I J K L M N O
 8 P Q R S T U V W X Y
 9 Z [\] ^ _ ` a b c
10 d e f g h i j k l m
11 n o p q r s t u v w
12 x y z { | } ~

 2.4 Characters and Strings 80

About Example02_4b.m
[3] Line 2 prints a heading of column numbers and a newline character, moving the cursor to the next line.
 Each pass of the outer for-loop (lines 3-14) prints a row on the screen; the row numbers are designated as 3, 4, ...
12 for each pass. In the beginning of the loop (line 4), the row number is printed. Then 10 characters are printed using
an inner for-loop (lines 5-12). At the end of the outer for-loop, a newline character is printed (line 13), moving the
cursor to the next line.
 Each pass of the inner for-loop (lines 5-12) prints a character aligning with the column number. Line 6 generates
an ASCII code using the row-number and column-number; for example, the ASCII code corresponds to row-number 4
and column-number 5 is 45. If an ASCII code is less than 32 or larger than 126 (line 7) then two spaces are printed (line
8), otherwise the ASCII code is printed as a character followed by a space (line 10).
 The expression (code < 32) || (code > 126) in the if-statement (line 7) is a logical expression. We'll
introduce logical data in Section 2.5 and logical expressions in Section 2.9.
 In line 10, the format specifier %c requires a character data, therefore code (a double) is converted to a character
according to the ASCII Code. #

80 Chapter 2 Data Types, Operators, and Expressions

2.4b ASCII Codes

 2.5 Logical Data 81

2.5 Logical Data

Example02_05.m: Logical Data Type
[2] These statements demonstrate some concepts about
logical data. A Command Window session and the
Workspace is shown in [3-4], respectively. ↘

� 1� clear

� 2� a = true

� 3� b = false

� 4� c = 6 > 5

� 5� d = 6 < 5

� 6� e = (6 > 5)*10

� 7� f = false*10+true*2

� 8� g = (6 > 5) & (6 < 5)

� 9� h = (6 > 5) | (6 < 5)

�10� k = logical(5)

�11� m = 5 | 0

�12� n = (-2) & 'A'

[4] This symbol indicates
a logical type.

Logical Values: true and false
[1] The only logical values are true and false.
MATLAB uses one byte (8 bits) to store a logical value.
When a logical value is converted to a number, true
becomes 1 and false becomes 0. When a numeric
value is converted to a logical value, any non-zero
number becomes true and zero becomes false.

� 13� >> clear

� 14� >> a = true

� 15� a =

� 16� logical

� 17� 1

� 18� >> b = false

� 19� b =

� 20� logical

� 21� 0

� 22� >> c = 6 > 5

� 23� c =

� 24� logical

� 25� 1

� 26� >> d = 6 < 5

� 27� d =

� 28� logical

� 29� 0

� 30� >> e = (6 > 5)*10

� 31� e =

� 32� 10

� 33� >> f = false*10+true*2

� 34� f =

� 35� 2

� 36� >> g = (6 > 5) & (6 < 5)

� 37� g =

� 38� logical

� 39� 0

� 40� >> h = (6 > 5) | (6 < 5)

� 41� h =

� 42� logical

� 43� 1

� 44� >> k = logical(5)

� 45� k =

� 46� logical

� 47� 1

� 48� >> m = 5 | 0

� 49� m =

� 50� logical

� 51� 1

� 52� >> n = (-2) & 'A'

� 53� n =

� 54� logical

 �55� 1

[3] This is a Command
Window session of

Example02_05.m. ←

About Example02_05.m
[5] Line 2 assigns true to a variable a, which is then of type logical (line 16). When displayed on the Command
Window, true is always displayed as 1 (line 17).
 Line 3 assigns false to a variable b. When displayed on the Command Window, false is always displayed as
0 (line 21).

Relational Operators
A relational operator (>, <, etc., to be introduced in Section 2.9) always operates on two numeric values, and the result is
a logical value.
 In line 4, the number 6 and the number 5 are operated using the logical operator >. The result of 6 > 5 is true
and is assigned to c, which is of type logical and displayed as 1 (lines 24-25).
 In line 5, the number 6 and the number 5 are operated using the logical operator <. The result of 6 < 5 is false
and is assigned to d, which is of type logical and displayed as 0 (lines 28-29).

Numeric Operations Involving Logical Values
A numeric operator (+, -, etc., to be introduced in Section 2.8) always operates on numeric values, and the result is a
numeric value. If a numeric operator involves logical values, the logical values are converted to numeric values: true
becomes 1 and false becomes 0.
 In line 6, the result of 6 > 5 is a logical value true, which is to be multiplied by the number 10. Since the
multiplication (*) is a numeric operator, MATLAB converts true to the number 1, and the result is 10 (line 32), which
is a double number. When a double number is output to the Command Window, its type is not shown; remember
that double is the default data type.
 In line 7, again, since the multiplication (*) and the addition (+) are numeric operators, MATLAB converts false
to 0 and true to 1, and the result is 2 (line 35), which is a double number.

Logical Operators
A logical operator (AND, OR, etc.) always operates on logical values, and the result is a logical value. If a logical
operation involves numeric values, the numeric values are converted to logical values (non-zero values become true
and zero becomes false).
 MATLAB uses the symbol & for logical AND and the symbol | for logical OR. Table 2.5a (next page) lists the
rules for logical AND (&). Table 2.5b (next page) lists the rules for logical OR (|).
 In line 8, the result of 6 > 5 is true and the result of 6 < 5 is false. The result of logical AND (&) operation
for a true and a false is false (lines 38-39).
 In line 9, the result of local OR (|) operation for a true and a false is true (lines 42-43).
 We'll introduce relational and logical operators in Section 2.9.

Conversion to Logical Data Type
Line 10 converts a numeric value 5 to logical data type. The result is true (lines 46-47). When converted to a logical
value, any non-zero number becomes true and the zero becomes false. A true is displayed as 1 and a false is
displayed as zero.
 In line 11, since | (OR) is a logical operator, MATLAB converts the numbers 5 and 0 to logical values true and
false, respectively. The result is true (lines 50-51).
 In line 12, again, since & (AND) is a logical operator, MATLAB converts both the number -2 and the character 'A'
to logical values true. The result is true (lines 54-55).

 2.5 Logical Data 8282 Chapter 2 Data Types, Operators, and Expressions

 2.5 Logical Data 83

Table 2.5a Rules of Logiccal and (&)
AND (&) true false
true true false
false false false

Table 2.5b Rules of Logiical or (|)
OR (|) true false
true true true
false true false

Avoid Using i, j, and the letter l as Variable Names
[6] In MATLAB, both letters i and j are used to represent the constant −1 . If you use them as variable names, they
are overridden by the values assigned to them and no longer represent −1 . In this book, we'll avoid using them as
variable names.
 The letter l is often confused with the number 1. In this book, we'll also avoid using it as a variable name. #

 2.6 Arrays 84

2.6 Arrays

All Data Are Treated as Arrays
[1] MATLAB treats all data as arrays. A zero-dimensional array (1×1) is called a scalar. A one-dimensional array is
called a vector, either a row vector (1× c) or a column vector (r ×1). A two-dimensional array (r × c) is called a
matrix. A three-dimensional array (r × c × p) may be called a three-dimensional array or three-dimensional matrix.
It is possible to create four or more dimensional arrays; in practice, however, they are seldom used. The first dimension
is called the row dimension, the second dimension is called the column dimension, and the third dimension is called
the page dimension.

Scalar
[4] Lines 2-4 show three ways to create the same scalar.
Line 2 creates a single value 5. Line 3 creates a vector of
one element, i.e., a scalar. Line 4 creates a 1x1 matrix
(see an explanation below for the function ones). The
variables a, b, and c are all scalars; they are all equal;
there is no difference among these three variables.

Function ones
 The function ones (lines 4-5) creates an array of all
ones with specified dimension sizes. The syntax is

ones(sz1, sz2, ..., szN)

where sz1 is the size of the first dimension (row
dimension), sz2 is the size of the second dimension
(column dimension), and so forth. The function ones is
one of the array creation functions. Table 2.6a (page 88)
lists some array creation functions.

� 12� >> clear

� 13� >> a = 5

� 14� a =

� 15� 5

� 16� >> b = [5]

� 17� b =

� 18� 5

� 19� >> c = 5*ones(1,1)

� 20� c =

� 21� 5

� 22� >> D = ones(2, 3)

� 23� D =

� 24� 1 1 1

� 25� 1 1 1

� 26� >> e = [1, 2, 3, 4, 5]

� 27� e =

� 28� 1 2 3 4 5

� 29� >> f = [1 2 3 4 5]

� 30� f =

� 31� 1 2 3 4 5

� 32� >> g = [1:5]

� 33� g =

� 34� 1 2 3 4 5

� 35� >> h = 1:5

� 36� h =

� 37� 1 2 3 4 5

� 38� >> k = 1:1:5

� 39� k =

� 40� 1 2 3 4 5

� 41� >> m = linspace(1, 5, 5)

� 42� m =

� 43� 1 2 3 4 5

Example02_06a.m
[2] Type the following commands (also see [3]). ↘
� 1� clear

� 2� a = 5

� 3� b = [5]

� 4� c = 5*ones(1,1)

� 5� D = ones(2, 3)

� 6� e = [1, 2, 3, 4, 5]

� 7� f = [1 2 3 4 5]

� 8� g = [1:5]

� 9� h = 1:5

�10� k = 1:1:5

�11� m = linspace(1, 5, 5)

[3] This is a Command
Window session of

Example02_06a.m. ←

84 Chapter 2 Data Types, Operators, and Expressions

2.6a Arrays Creations

Row Vectors
[5] Lines 6-11 show many ways to create the same row vector. Line 6 creates a row vector using the square brackets
([]). Commas are used to separate elements in a row. The commas can be omitted (line 7).
 Line 8 creates a row vector using the colon notation (:). The square brackets can be omitted (line 9). In a more
general form, an increment number can be inserted between the starting number and the ending number (line 10; also see
1.3[6], page 18). The function linspace (line 11) creates a row vector of linearly spaced numbers. The syntax is

linspace(start, end, n)

where n is the total number of elements. If n is omitted, its default is 100.
 There is no difference among the variables e, f, g, h, k, and m. #

Example02_06b.m
[1] Type the following commands (also see [2]). ↘

� 1� clear

� 2� a = zeros(1,5)

� 3� a(1,5) = 8

� 4� a(5) = 9

� 5� a([1, 2, 4]) = [8, 7, 6]

� 6� a(1:4) = [2, 3, 4, 5]

� 7� [rows, cols] = size(a)

� 8� len = length(a)

� 9� b = a

�10� c = a(1:5)

�11� d = a(3:5)

�12� e = a(3:length(a))

�13� f = a(3:end)

�14� f(5) = 10

[3] Line 2 creates a 1-by-5 array (i.e., a row vector) of all
zeros. Remember that there are two ways to access an
element of an array: subscript indexing and linear
indexing (1.9[23], page 37). Line 3 uses subscript
indexing, while line 4 uses linear indexing. For a vector
(row vector or column vector), we usually use linear
indexing.
 Line 5 assigns three values to the 1st, 2nd, and 4th
elements of the array a; i.e., line 5 is equivalent to

a(1) = 8, a(2) = 7, a(4) = 6

 Line 6, since 1:4 means [1,2,3,4], assigns four
values to the 1st-4th elements of the array a.

 2.6 Arrays 85

� 15� >> clear
� 16� >> a = zeros(1,5)
� 17� a =
� 18� 0 0 0 0 0
� 19� >> a(1,5) = 8
� 20� a =
� 21� 0 0 0 0 8
� 22� >> a(5) = 9
� 23� a =
� 14� 0 0 0 0 9
� 25� >> a([1, 2, 4]) = [8, 7, 6]
� 26� a =
� 27� 8 7 0 6 9
� 28� >> a(1:4) = [2, 3, 4, 5]
� 29� a =
� 30� 2 3 4 5 9
� 31� >> [rows, cols] = size(a)
� 32� rows =
� 33� 1
� 34� cols =
� 35� 5
� 36� >> len = length(a)
� 37� len =
� 38� 5
� 39� >> b = a
� 40� b =
� 41� 2 3 4 5 9
� 42� >> c = a(1:5)
� 43� c =
� 44� 2 3 4 5 9
� 45� >> d = a(3:5)
� 46� d =
� 47� 4 5 9
� 48� >> e = a(3:length(a))
� 49� e =
� 50� 4 5 9
� 51� >> f = a(3:end)
� 52� f =
� 53� 4 5 9
� 54� >> f(5) = 10
� 55� f =
 �56� 4 5 9 0 10

[2] This is a Command Window
session of Example02_06b.m. ←

2.6b Arrays Indexing

 2.6 Arrays 86

Size and Length of an Array
[4] The function size (line 7) outputs dimensional sizes
of an array. In line 7, size(a) outputs two values:
number of rows and number of columns; and a two-
element vector is used to receive the output values.
 The length of an array is the maximum dimension
size of the array; i.e.,

length(a) ≡ max(size(a))

In this case, the length of the array a is 5 (line 8; also see
lines 36-38, last page).

[5] Line 9 assigns the entire array a to a variable b, which
becomes the same sizes and contents as the array a. Line
10 uses another way to assign all the values of the array a
to a variable. The variables a, b, and c are the same in
sizes and contents.
 Lines 11-13 demonstrate three ways to assign the 3rd,
4th, and 5th elements of the array a to a variable. The
variables d, e, and f are the same in sizes and contents.
Note that, in line 13, the keyword end means the last
index of the underlying array.
 Line 14 attempts to assign a value to the 5th element
of the array f, which is a row vector of length 3.
MATLAB expands the array f to a row vector of length 5
to accommodate the value and pads zeros for the unused
elements; f now is a row vector of length 5. #

Example02_06c.m
[1] Type the following commands (also see [2]). →

� 1� clear
� 2� a = [1, 2; 3, 4; 5, 6]
� 3� b = 1:6
� 4� c = reshape(b, 3, 2)
� 5� d = reshape(b, 2, 3)
� 6� e = d'
� 7� c(:,3) = [7, 8, 9]
� 8� c(4,:) = [10, 11, 12]
� 9� c(4,:) = []
�10� c(:,2:3) = []

� 11� >> clear
� 12� >> a = [1, 2; 3, 4; 5, 6]
� 13� a =
� 14� 1 2
� 15� 3 4
� 16� 5 6
� 17� >> b = 1:6
� 18� b =
� 19� 1 2 3 4 5 6
� 20� >> c = reshape(b, 3, 2)
� 21� c =
� 22� 1 4
� 23� 2 5
� 24� 3 6
� 25� >> d = reshape(b, 2, 3)
� 26� d =
� 27� 1 3 5
� 28� 2 4 6
� 29� >> e = d'
� 30� e =
� 31� 1 2
� 32� 3 4
� 33� 5 6
� 34� >> c(:,3) = [7, 8, 9]
� 35� c =
� 36� 1 4 7
� 37� 2 5 8
� 38� 3 6 9
� 39� >> c(4,:) = [10, 11, 12]
� 40� c =
� 41� 1 4 7
� 42� 2 5 8
� 43� 3 6 9
� 44� 10 11 12
� 45� >> c(4,:) = []
� 46� c =
� 47� 1 4 7
� 48� 2 5 8
� 49� 3 6 9
� 50� >> c(:,2:3) = []
� 51� c =
� 52� 1
� 53� 2
� 54� 3

[2] This is a Command Window
session of Example02_06c.m.

86 Chapter 2 Data Types, Operators, and Expressions

2.6c Colon: Entire Column/Row

 2.6 Arrays 87

Function reshape
[3] Line 2 creates a 3-by-2 matrix. Line 3 creates a row
vector of 6 elements. Line 4 reshapes the vector b into a
3-by-2 matrix. The reshaping doesn't alter the order of
the elements stored in the array (see 1.9[11-16], page 36);
it alters dimensionality and dimension sizes. Note that c
is different from a (see lines 14-16 and 22-24). To obtain
a matrix the same as a from the vector b, we reshape b
into a 2-by-3 matrix (line 5) and then transpose it (line 6).
Now e is the same as a (lines 31-33).

Colon: The Entire Column/Row
Line 7 assigns 3 elements to the third column of c. Note
that [7, 8, 9] is automatically transposed, becoming
a column. Line 8 assigns 3 elements to the fourth row of
c.
 The colon (:) represents the entire column when
placed at the row (first) index and represents the entire
row when placed at the column (second) index.

Empty Data
Line 9 sets the fourth row of c to be empty, i.e., deleting
the entire row. Line 10 sets the 2nd-3rd columns to be
empty, i.e., deleting the 2nd-3rd columns.
 The [] represents an empty data. #

Example02_06d.m
[1] Type the following commands (also see [2]). →

� 1� clear

� 2� a = reshape(1:6, 3, 2)

� 3� b = [7; 8; 9]

� 4� c = horzcat(a, b)

� 5� d = [a, b]

� 6� e = b'

� 7� f = vertcat(d, e)

� 8� g = [d; e]

� 9� h = fliplr(c)

�10� k = flipud(c)

� 11� >> clear

� 12� >> a = reshape(1:6, 3, 2)

� 13� a =

� 14� 1 4

� 15� 2 5

� 16� 3 6

� 17� >> b = [7; 8; 9]

� 18� b =

� 19� 7

� 20� 8

� 21� 9

� 22� >> c = horzcat(a, b)

� 23� c =

� 24� 1 4 7

� 25� 2 5 8

� 26� 3 6 9

� 27� >> d = [a, b]

� 28� d =

� 29� 1 4 7

� 30� 2 5 8

� 31� 3 6 9

� 32� >> e = b'

� 33� e =

� 34� 7 8 9

� 35� >> f = vertcat(d, e)

� 36� f =

� 37� 1 4 7

� 38� 2 5 8

� 39� 3 6 9

� 40� 7 8 9

� 41� >> g = [d; e]

� 42� g =

� 43� 1 4 7

� 44� 2 5 8

� 45� 3 6 9

� 46� 7 8 9

� 47� >> h = fliplr(c)

� 48� h =

� 49� 7 4 1

� 50� 8 5 2

� 51� 9 6 3

� 52� >> k = flipud(c)

� 53� k =

� 54� 3 6 9

� 55� 2 5 8

� 56� 1 4 7

[2] This is a Command Window
session of Example02_06d.m.

2.6d Concatenation and Flipping

 2.6 Arrays 88

Table 2.6a Array Creation Functions
Function Description

zeros(n,m) Create an n-by-m matrix of all zeros

ones(n,m) Create an n-by-m matrix of all ones

eye(n) Create an n-by-n identity matrix

diag(v) Create a square diagonal matrix with v on the diagonal

rand(n,m) Create an n-by-m matrix of uniformly distributed random numbers in the interval (0,1)

randn(n,m) Create an n-by-m matrix of random numbers from the standard normal distribution

linspace(a,b,n) Create a row vector of n linearly spaced numbers from a to b

[X,Y] = meshgrid(x,y) Create a 2-D grid coordinates based on the coordinates in vectors x and y.

Details and MMore: Help>MATLAB>Language Fundamentals>Matrices and Arrays

Concatenation of Arrays
[3] Line 2 creates a 3-by-2 matrix a by reshaping the vector [1:6]: the first 3 elements become the first column, and
the second 3 elements become the second column. Line 3 creates a column vector b of 3 elements.
 Using function horzcat, line 4 concatenates a and b horizontally to create a 3-by-3 matrix c. Line 5
demonstrates a more convenient way to do the same job, using a comma (,) to concatenate arrays horizontally.
 Line 6 transposes (see 1.6[12], page 27) the column vector b to create a row vector e of 3 elements.
 Using the function vertcat, line 7 concatenates d and e vertically to create a 4-by-3 matrix f. Line 8
demonstrates a more convenient way to do the same job, using a semicolon (;) to concatenate arrays vertically.

Flipping Matrices
Using the function fliplr (flip left-side right), line 9 flips the matrix c horizontally. Using the function flipud (flip
upside down), line 10 flips the matrix c vertically.
 Functions for array replication, concatenation, flipping, and reshaping are summarized in Table 2.6b.

More Array Operations
We'll introduce arithmetic operations for numeric data, including arrays and scalars, in the next two sections. #

Table 2.6b Arrray Replication, Concatenation, Flipping, and Reshaping
Function Description

repmat(a,n,m) Replicate array a n times in row-dimension and m times in column-dimension

horzcat(a,b,...) Concatenate arrays horizontally

vertcat(a,b,...) Concatenate arrays vertically

flipud(A) Flip an array upside down

fliplr(A) Flip an array left-side right

reshape(A,n,m) Reshape an array to an n-by-m matrix

Details and MMore: Help>MATLAB>Language Fundamentals>Matrices and Arrays

88 Chapter 2 Data Types, Operators, and Expressions

Example02_07.m
[2] Type the following commands (also see [3]). ↘

� 1� clear

� 2� a = 1:5

� 3� b = sum(a)

� 4� c = cumsum(a)

� 5� d = prod(a)

� 6� e = cumprod(a)

� 7� f = diff(a)

� 8� A = reshape(1:9, 3, 3)

� 9� g = sum(A)

�10� B = cumsum(A)

�11� h = prod(A)

�12� C = cumprod(A)

�13� D = diff(A)

�14� p = min(a)

�15� q = max(a)

�16� r = min(A)

�17� s = max(A)

 2.7 Sums, Products, Minima, and Maxima 89

2.7 Sums, Products, Minima, and Maxima

Sums, Prod
Table 2.7

ducts, Minima, and Maxima
Function Description

sum(A) Sum of array elements

cumsum(A) Cumulative sum

diff(A) Differences between adjacent elements

prod(A) Product of array elements

cumprod(A) Cumulative product

min(A) Minimum

max(A) Maximum

[1] This section introduces some frequently used
functions that calculate the sum, product, minima, and
maxima of an array. These functions are summarized in
Table 2.7.

� 18� >> clear

� 19� >> a = 1:5

� 20� a =

� 21� 1 2 3 4 5

� 22� >> b = sum(a)

� 23� b =

� 24� 15

� 25� >> c = cumsum(a)

� 26� c =

� 27� 1 3 6 10 15

� 28� >> d = prod(a)

� 29� d =

� 30� 120

� 31� >> e = cumprod(a)

� 32� e =

� 33� 1 2 6 24 120

� 34� >> f = diff(a)

� 35� f =

� 36� 1 1 1 1

� 37� >> A = reshape(1:9, 3, 3)

� 38� A =

� 39� 1 4 7

� 40� 2 5 8

� 41� 3 6 9

� 42� >> g = sum(A)

� 43� g =

� 44� 6 15 24

� 45� >> B = cumsum(A)

� 46� B =

� 47� 1 4 7

� 48� 3 9 15

� 49� 6 15 24

� 50� >> h = prod(A)

� 51� h =

� 52� 6 120 504

� 53� >> C = cumprod(A)

� 54� C =

� 55� 1 4 7

� 56� 2 20 56

� 57� 6 120 504

� 58� >> D = diff(A)

� 59� D =

� 60� 1 1 1

� 61� 1 1 1

[3] This is a Command Window
session of Example02_07.m

(continued at [4], next page).

Sums and Products of Vectors
[5] Let ai , i = 1, 2, ... , n , be the elements of a vector a (either row
vector or column vector). When applied to a vector, the function
sum (line 3) outputs a scalar b, where

b = a1 + a2 + ... + an
In this example (line 24),

b = 1+ 2 + 3+ 4 + 5 = 15

 When applied to a vector, the function cumsum (cumulative
sum; line 4) outputs a vector c of n elements, where

c1 = a1 and ci = ci−1 + ai; i = 2, 3, ..., n

In this example (line 27),
c1 = a1 = 1
c2 = c1 + 2 = 3
c3 = c2 + 3= 6
c4 = c3 + 4 = 10
c5 = c4 + 5 = 15

 When applied to a vector, function prod (line 5) outputs a scalar
d,

d = a1 × a2 × ... × an
In this example (line 30),

d = 1× 2 × 3× 4 × 5 = 120

 When applied to a vector, the function cumprod (cumulative
product; line 6) outputs a vector e of n elements, where

e1 = a1 and ei = ei−1 × ai; i = 2, 3, ... , n

In this example (line 33),
e1 = a1 = 1
e2 = e1 × 2 = 2
e3 = e2 × 3= 6
e4 = e3 × 4 = 24
e5 = e4 × 5 = 120

 When applied to a vector, the function diff (line 7) outputs a
vector f of n-1 (not n) elements, where

fi = ai+1 − ai; i = 1, 2, ... , n −1

In this example (line 36),

f1 = 2 −1= 1
f2 = 3− 2 = 1
f3 = 4 − 3= 1
f4 = 5 − 4 = 1

 2.7 Sums, Products, Minima, and Maxima 90

� 62� >> p = min(a)

� 63� p =

� 64� 1

� 65� >> q = max(a)

� 66� q =

� 67� 5

� 68� >> r = min(A)

� 69� r =

� 70� 1 4 7

� 71� >> s = max(A)

� 72� s =

� 73� 3 6 9

[4] This is a Command Window
session of Example02_07.m

(Continued). →

90 Chapter 2 Data Types, Operators, and Expressions

 2.7 Sums, Products, Minima, and Maxima 91

Sums and Products of Matrices
[6] Let Aij , i = 1, 2, ... , n, j = 1, 2, ... , m be the elements of an n ×m matrix A. When applied to a matrix, the function
sum (line 9) outputs a row vector g, where gj is the sum of the jth column of the matrix A; i.e.,

gj = A1 j + A2 j + ... + Anj; j = 1, 2, ... , m

In this example (line 44),
g1 = 1+ 2 + 3= 6
g2 = 4 + 5 + 6 = 15
g3 = 7 + 8 + 9 = 24

Note that the summing is along the first dimension (i.e., the row dimension); this rule also applies to the functions
cumsum, prod, and cumprod and also applies to three-dimensional arrays.
 When applied to a matrix, the function cumsum (line 10) outputs an n ×m matrix B, where

B1 j = A1 j and Bij = B(i−1) j + Aij; i = 2, 3, ... , n; j = 1, 2, ... , m

In this example (lines 47-49),

B11 = A11 = 1
B21 = B11 + 2 = 3
B31 = B21 + 3= 6

B12 = A12 = 4
B22 = B12 + 5 = 9
B32 = B22 + 6 = 15

B13 = A13 = 7
B23 = B13 + 8 = 15
B33 = B23 + 9 = 24

 When applied to a matrix, the function prod (line 11) outputs a row vector h,

hj = A1 j × A2 j × ... × Anj; j = 1, 2, ... , m

In this example (line 52),
h1 = 1× 2 × 3= 6
h2 = 4 × 5 × 6 = 120
h3 = 7 × 8 × 9 = 504

 When applied to a matrix, the function cumprod (line 12) outputs an n ×m matrix C, where

C1 j = A1 j and Cij = C(i−1) j × Aij; i = 2, 3, ..., n; j = 1, 2, ... , m

In this example (lines 55-57),

C11 = A11 = 1
C21 = C11 × 2 = 2
C31 = C21 × 3= 6

C12 = A12 = 4
C22 = C12 × 5 = 20
C32 = C22 × 6 = 120

C13 = A13 = 7
C23 = C13 × 8 = 56
C33 = C23 × 9 = 504

 When applied to a matrix, the function diff (line 13) outputs an (n −1)×m (not n ×m) matrix D, where

Dij = A(i+1) j − Aij; i = 1, 2, ..., n −1; j = 1, 2, ... , m

In this example (lines 60-61),
D11 = 2 −1= 1
D21 = 3− 2 = 1

D12 = 5 − 4 = 1
D22 = 6 − 5 = 1

D13 = 8 − 7 = 1
D23 = 9 − 8 = 1

Minima and Maxima
The output of the functions min or max for a vector are scalars (lines 14-15, 64, 67).
 The output of the functions min or max for an n ×m matrix is a row vector of m elements (lines 16-17, 70, 73), in
which each element is the minimum/maximum of the corresponding column. #

 2.8 Arithmetic Operators 92

2.8 Arithmetic Operators

TTable 2.8 Arithmetic Operators
Operator Name Description Precedence level

+ plus Addition 6
- minus Subtraction 6
* mtimes Multiplication 5
/ mrdivide Division 5
^ mpower Exponentiation 2
.* times Element-wise multiplication 5
./ rdivide Element-wise division 5
.^ power Element-wise exponentiation 2
- uminus Unary minus 4
+ uplus Unary plus 4

Help>MA
Help

TLAB>Language Fund
p>MATLAB>Language

Details and More:
damentals>Operators and Elementary Operations>
e Fundamentals>Operators and Elementary Operat

>Operator Precedence
tions>Arithmetic

[1] An arithmetic operator operates on one (unary operator) or two (binary
operator) numeric data and the result is also a numeric data. If any of the
operands is not a numeric data, it is converted to a numeric data. Table 2.8
lists some of the frequently used arithmetic operators.

Precedence Level of Operators
The precedence level of operators determines the order in which MATLAB
evaluates an operation. We attach to each operator a precedence number as
shown in Tables 2.8 (and Tables 2.9a, 2.9b in page 99); the lower number
has higher precedence. For operators with the same precedence level, the
evaluation is from left to right. The parentheses () has highest precedence
level (1), while the assignment = has lowest precedence level (13).

Names of Operators
An operator is actually a short hand of a function name. For example, 5+6
is internally evaluated using the function call

>> plus(3,5)
ans =
 8

This feature is useful when creating classes and their associate operators.
In Section 4.9, we'll demonstrate the creation of a class of polynomial, for
which we'll implement the addition and subtraction of polynomials using
the operators + and -. →

Example02_08a.m
[2] These statements demonstrate some
arithmetic operations on matrices (see the
Command Window session in [3-4], next
page).

� 1� clear
� 2� A = reshape(1:6, 2, 3)
� 3� B = reshape(7:12, 2, 3)
� 4� C = A+B
� 5� D = A-B
� 6� E = B'
� 7� F = A*E
� 8� a = [3, 6]
� 9� b = a/F
�10� c = b*F
�11� G = F^2
�12� H = A.*B
�13� K = A./B
�14� M = A.^2
�15� P = A+10
�16� Q = A-10
�17� R = A*1.5
�18� S = A/2

92 Chapter 2 Data Types, Operators, and Expressions

2.8a Matrix Operations

 2.8 Arithmetic Operators 93

� 19� >> clear
� 20� >> A = reshape(1:6, 2, 3)
� 21� A =
� 22� 1 3 5
� 23� 2 4 6
� 24� >> B = reshape(7:12, 2, 3)
� 25� B =
� 26� 7 9 11
� 27� 8 10 12
� 28� >> C = A+B
� 29� C =
� 30� 8 12 16
� 31� 10 14 18
� 32� >> D = A-B
� 33� D =
� 34� -6 -6 -6
� 35� -6 -6 -6
� 36� >> E = B'
� 37� E =
� 38� 7 8
� 39� 9 10
� 40� 11 12
� 41� >> F = A*E
� 42� F =
� 43� 89 98
� 44� 116 128
� 45� >> a = [3, 6]
� 46� a =
� 47� 3 6
� 48� >> b = a/F
� 49� b =
� 50� -13.0000 10.0000
� 51� >> c = b*F
� 52� c =
� 53� 3 6
� 54� >> G = F^2
� 55� G =
� 56� 19289 21266
� 57� 25172 27752
� 58� >> H = A.*B
� 59� H =
� 60� 7 27 55
� 61� 16 40 72
� 62� >> K = A./B
� 63� K =
� 64� 0.1429 0.3333 0.4545
� 65� 0.2500 0.4000 0.5000
� 66� >> M = A.^2
� 67� M =
� 68� 1 9 25
� 69� 4 16 36

� 70� >> P = A+10
� 71� P =
� 72� 11 13 15
� 73� 12 14 16
� 74� >> Q = A-10
� 75� Q =
� 76� -9 -7 -5
� 77� -8 -6 -4
� 78� >> R = A*1.5
� 79� R =
� 80� 1.5000 4.5000 7.5000
� 81� 3.0000 6.0000 9.0000
� 82� >> S = A/2
� 83� S =
� 84� 0.5000 1.5000 2.5000
� 85� 1.0000 2.0000 3.0000

[3] A Command Window
session of Example02_08a.m

(continued at [4]).

[4] A Command Window session
of Example02_08a.m

(Continued).

Addition of Matrices
[5] Let Aij , i = 1, 2, ... , n; j = 1, 2, ... , m be the elements of an n ×m matrix A, and Bij , i = 1, 2, ... , n; j = 1, 2, ... , m
be the elements of another n ×m matrix B. The addition (line 4) of the two matrices is an n ×m matrix C,

Cij = Aij + Bij
i = 1, 2, ... , n; j = 1, 2, ... , m

In this example (lines 30-31),
C11 = 1+ 7 = 8 C12 = 3+ 9 = 12 C13 = 5 +11= 16
C21 = 2 + 8 = 10 C22 = 4 +10 = 14 C23 = 6 +12 = 18

Subtraction of Matrices
The subtraction (line 5) of B from A is an n ×m matrix D,

Dij = Aij − Bij
i = 1, 2, ... , n; j = 1, 2, ... , m

In this example (lines 34-35),
D11 = 1− 7 = −6 D12 = 3− 9 = −6 D13 = 5 −11= −6
D21 = 2 − 8 = −6 D22 = 4 −10 = −6 D23 = 6 −12 = −6

Transpose of Matrices
The transpose (line 6; also see 1.6[12], page 27) of B is an m × n matrix E,

Eij = Bji

i = 1, 2, ... , m; j = 1, 2, ... , n
In this example (lines 38-40)

E11 = B11 = 7 E12 = B21 = 8
E21 = B12 = 9 E22 = B22 = 10
E31 = B13 = 11 E32 = B23 = 12

Multiplication of Matrices
The multiplication (line 7) of an n ×m matrix A by an m × p matrix E is an n × pmatrix F

Fij = Aik × Ekj
k=1

m

∑
i = 1, 2, ... , n; j = 1, 2, ... , p

In this example (lines 43-44), n = 2, m = 3, and p = 2, and the result is a 2 × 2 matrix:

F11 = 1× 7 + 3× 9 + 5 ×11= 89
F21 = 2 × 7 + 4 × 9 + 6 ×11= 116
F12 = 1× 8 + 3×10 + 5 ×12 = 98
F22 = 2 × 8 + 4 ×10 + 6 ×12 = 128

Note that two matrices can be multiplied only if the two matrices have the same inner dimension size.

 2.8 Arithmetic Operators 9494 Chapter 2 Data Types, Operators, and Expressions

 2.8 Arithmetic Operators 95

Division of Matrices
[6] The division (line 9) of an r ×m matrix a by an m ×m matrix F (i.e., a/F) is an r ×m matrix b; they are related by

br×m × Fm×m = ar×m

In this example (line 50), r = 1 and m = 2, and the result is a 1× 2 row vector b,

b = [−13 10]
since it satisfies (see lines 10 and 53)

−13 10�� �� ×
89 98
116 128

�

�
�

�

�
� = 3 6�� ��

Note that a and F must have the same column size and, in the above example, F is a square matrix and the resulting
matrix b has the same dimension sizes as a. In general, F is not necessarily a square matrix. If F is not a square matrix,
then a/F will output a least-squares solution b of the system of equations b × F = a (see line 8 in page 97, for example).

Exponentiation of Square Matrices
The exponentiation of a square matrix is the repeated multiplication of the matrix itself. For example (line 11)

F ^ 2 ≡ F × F
In this example (lines 56-57)

F ^ 2 = 89 98
116 128

�

�
�

�

�
� ×

89 98
116 128

�

�
�

�

�
�

= 19289 21266
25172 27752

�

�
�

�

�
�

Element-Wise Multiplication of Matrices
The element-wise multiplication (.* in line 12) operates on two n ×m matrices of the same sizes A and B, and the
result is a matrix H of the same size,

Hij = Aij × Bij
i = 1, 2, ... , n; j = 1, 2, ... , m

In this example (lines 60-61)
H11 = 1× 7 = 7 H12 = 3× 9 = 27 H13 = 5 ×11= 55
H21 = 2 × 8 = 16 H22 = 4 ×10 = 40 H23 = 6 ×12 = 72

Element-Wise Division of Matrices
The element-wise division (./ in line 13) also operates on two n ×m matrices of the same sizes A and B, and the result
is a matrix K of the same size,

Kij = Aij Bij
i = 1, 2, ... , n; j = 1, 2, ... , m

In this example (lines 64-65)

K11 = 1 7 K12 = 3 9 = 1 3 K13 = 5 11

K21 = 2 8 = 0.25 K22 = 4 10 = 0.4 K23 = 6 12 = 0.5

 2.8 Arithmetic Operators 96

Element-Wise Exponentiation of Matrices
[7] The element-wise exponentiation (line 14) operates on an n ×m matrix A and a scalar q, and the result is an n ×m
matrix M,

Mij = Aij()q
i = 1, 2, ... , n; j = 1, 2, ... , m

In this example (lines 68-69)

M11 = 1
2 = 1 M12 = 3

2 = 9 M13 = 5
2 = 25

M 21 = 2
2 = 4 M 22 = 4

2 = 16 M 23 = 6
2 = 36

Operations Between a Matrix and a Scalar
Let @ be one of the operators +, -, *, /, .*, ./, or .^, and s be a scalar, then A@s is an n ×m matrix V, where

Vij = Aij @s
i = 1, 2, ... , n; j = 1, 2, ... , m

and s@A is also an n ×m matrix W, where

Wij = s@Aij
i = 1, 2, ... , n; j = 1, 2, ... , m

For example (lines 15-18)

A +10 = 1+10 3+10 5 +10
2 +10 4 +10 6 +10

�

�
�

�

�
�

A −10 = 1−10 3−10 5 −10
2 −10 4 −10 6 −10

�

�
�

�

�
�

A ×1.5 = 1×1.5 3×1.5 5 ×1.5
2 ×1.5 4 ×1.5 6 ×1.5

�

�
�

�

�
�

 A 2 =
1 2 3 2 5 2
2 2 4 2 6 2

�

�
�
�

�

�
�
�

In other words, an operation A@s or s@A can be thought of as an element-wise operation in which the scalar s is
expanded such that it has the same sizes as the matrix A and each element has the same value s. For example

A +10 = 1 3 5
2 4 6

�

�
�

�

�
� +

10 10 10
10 10 10

�

�
�

�

�
�

A ×1.5 = 1 3 5
2 4 6

�

�
�

�

�
� .* 1.5 1.5 1.5

1.5 1.5 1.5
�

�
�

�

�
�

#

96 Chapter 2 Data Types, Operators, and Expressions

Arithmetic Operators for Vectors
[3] A vector is a special matrix, in which either the row-size or the column-size is equal to one. Thus, all the rules of the
arithmetic operations for matrices apply to those for vectors.

Division (/) by a Non-Square Matrix
In line 8, since b is not a square matrix, g is not an exact solution of g*b = a. Instead, g is the least-squares solution
of the equation g*b = a (for details and more: >> doc /). In general, if a is an r ×m matrix and b is a t ×m
matrix, then the result g of slash operator (/) is an r × t matrix.
 In this case a is a 1× 4 matrix and b is also a 1× 4 matrix; therefore, the result g must be a 1×1 matrix, i.e., a
scalar. MATLAB seeks the least-squares solution for the system of 4 equations:

g × [5 6 7 8] = [1 2 3 4]

and the least-squares solution is g = 0.4023 (line 36). #

 2.8 Arithmetic Operators 97

Example02_08b.m
[1] These statements demonstrate some arithmetic
operations on vectors (also see [2]). Remember
that a vector is a special case of matrices. Thus
operations on vectors are special cases of those on
matrices.

� 1� clear

� 2� a = 1:4

� 3� b = 5:8

� 4� c = a+b

� 5� d = a-b

� 6� e = a*(b')

� 7� f = (a')*b

� 8� g = a/b

� 9� h = a.*b

�10� k = a./b

�11� m = a.^2

� 12� >> clear

� 13� >> a = 1:4

� 14� a =

� 15� 1 2 3 4

� 16� >> b = 5:8

� 17� b =

� 18� 5 6 7 8

� 19� >> c = a+b

� 20� c =

� 21� 6 8 10 12

� 22� >> d = a-b

� 23� d =

� 24� -4 -4 -4 -4

� 25� >> e = a*(b')

� 26� e =

� 27� 70

� 28� >> f = (a')*b

� 29� f =

� 30� 5 6 7 8

� 31� 10 12 14 16

� 32� 15 18 21 24

� 33� 20 24 28 32

� 34� >> g = a/b

� 35� g =

� 36� 0.4023

� 37� >> h = a.*b

� 38� h =

� 39� 5 12 21 32

� 40� >> k = a./b

� 41� k =

� 42� 0.2000 0.3333 0.4286 0.5000

� 43� >> m = a.^2

� 44� m =

� 45� 1 4 9 16

[2] This is a Command Window
session of Example02_08b.m.

2.8b Vector Operations

Arithmetic Operators for Scalars
[3] A scalar is a 1x1 matrix. Thus, all the rules of the arithmetic operations for matrices can apply to those for scalars.
 Note that, in cases of scalar operations, there is no difference between operators with or without a dot (.); i.e., for
scalar operations, * is the same as .*, / is the same as ./, and ^ is the same as .^. #

 2.8 Arithmetic Operators 98

Example02_08c.m
[1] These statements demonstrate some arithmetic
operations on scalars (also see [2]). Remember that a
scalar is a special case of matrices. Thus operations on
scalars are special cases of those on matrices.

� 1� clear
� 2� a = 6
� 3� b = 4
� 4� c = a+b
� 5� d = a-b
� 6� e = a*b
� 7� f = a/b
� 8� g = a^2
� 9� h = a.*b
� 0� k = a./b
�11� m = a.^2

� 12� >> clear
� 13� >> a = 6
� 14� a =
� 15� 6
� 16� >> b = 4
� 17� b =
� 18� 4
� 19� >> c = a+b
� 20� c =
� 21� 10
� 22� >> d = a-b
� 23� d =
� 24� 2
� 25� >> e = a*b
� 26� e =
� 27� 24
� 28� >> f = a/b
� 29� f =
� 30� 1.5000
� 31� >> g = a^2
� 32� g =
� 33� 36
� 34� >> h = a.*b
� 35� h =
� 36� 24
� 37� >> k = a./b
� 38� k =
� 39� 1.5000
� 40� >> m = a.^2
� 41� m =
� 42� 36

[2] This is a Command Window
session of Example02_08c.m.

98 Chapter 2 Data Types, Operators, and Expressions

2.8c Scalar Operations

 2.9 Relational and Logical Operators 99

2.9 Relational and Logical Operators

Taable 2.9a Relational Operators
Operator Description Precedence level

== Equal to 8

~= Not equal to 8

> Greater than 8

< Less than 8

>= Greater than or equal to 8

<= Less than or equal to 8

isequal Determine array equality

Details and M
Operators a

More: Help>MATLAB>Languag
and Elementary Operations>Rela

ge Fundamentals>
ational Operations

TTable 2.9b Logical Operrators
Operator Description Precedence level

& Logical AND 9

| Logical OR 10

~ Logical NOT 4

&& Logical AND (short-circuit) 11

|| Logical OR (short-circuit) 12

Details andM
Operators

More: Help>MATLAB>Languag
 and Elementary Operations>Lo

ge Fundamentals>
ogical Operations

Relational Operators
[1] A relational operator (Table 2.9a; also
see 2.5[5], page 82) always operates on
two numeric data (scalars, vectors, or
matrices); the result is a logical data. If
any of the operands is not a numeric data,
it is converted to a numeric data.
 As a rule, the two operands A and B
must have the same sizes, and the result is
a logical data of the same sizes (except
isequal, which results in a single logical
value). However, when one of the
operands is a scalar, e.g., A > s, where s is
a scalar and A is a matrix, the scalar is
expanded such that it has the same size as
the matrix A and each element has the
same value s (also see 2.8a[7], page 96).

Logical Operators
A logical operator (Table 2.9b; also see
2.5[5], page 82) operates on one or two
logical data (scalars, vectors, or matrices),
and the result is a logical data of the same
sizes. If any of the operands is not a
logical data, it is converted to a logical
data: a non-zero value is converted to a
true and a zero is converted to a false.

Example02_09.m
[2] These statements demonstrate some relational and logical operations (also see [3-4], next page).

� 1� clear

� 2� A = [5,0,-1; 3,10,2; 0,-4,8]

� 3� Map = (A > 6)

� 4� location = find(Map)

� 5� list = A(location)

� 6� list2 = A(find(A>6))

� 7� list3 = A(find(A>0 & A<=8 & A~=3))

� 8� list4 = A(A>0 & A<=8 & A~=3)

� 9� ~A

�10� ~~A

�11� isequal(A, ~~A)

About Example02_09.m
[5] In line 3, the expression A > 6 results in a
logical-value matrix the same size as A (lines 20-23).
The logical matrix can be thought of as a "map"
indicating the locations of the elements that are
greater than 6. Note that the parentheses in line 3 are
not needed, since the assignment (=) has lowest
precedence (2.8a[1], page 92). We sometimes add
redundant parentheses to enhance the readability,
avoiding confusion.

Function find
The function find (line 4) takes a logical array as
input argument and outputs a column vector of
numbers that are the linear indices (1.9[23], page 37)
of the elements with the value true in the array.
 Here (line 4), the 5th and 9th elements (in linear
indexing) of Map have the value true, so it outputs a
column vector consisting of 5 and 9 (lines 26-27).
 In line 5, the vector location is used to access
the array A; the result is a column vector containing
the numbers in A(5) and A(9) (lines 30-31).
 If we are concerned only with the numbers
themselves (not the locations), then the commands in
lines 3-5 can be combined, as shown in line 6,
resulting in the same two values (lines 34-35).
 Using function find with a logical expression as
the input argument allows us to find the elements in
an array that meet specific conditions. Suppose we
want to find the numbers in the array A that are
positive, less than or equal to 8, but not equal to 3; we
may write the statement as shown in line 7, and the
result is in lines 38-40.

[4] The Workspace.

 2.9 Relational and Logical Operators 100

� 12� >> clear

� 13� >> A = [5,0,-1; 3,10,2; 0,-4,8]

� 14� A =

� 15� 5 0 -1

� 16� 3 10 2

� 17� 0 -4 8

� 18� >> Map = (A > 6)

� 19� Map =

� 20� 3×3 logical array
� 21� 0 0 0

� 22� 0 1 0

� 23� 0 0 1

� 24� >> location = find(Map)

� 25� location =

� 26� 5

� 27� 9

� 28� >> list = A(location)

� 29� list =

� 30� 10

� 31� 8

� 32� >> list2 = A(find(A>6))

� 33� list2 =

� 34� 10

� 35� 8

� 36� >> list3 = A(find(A>0 & A<=8 & A~=3))

� 37� list3 =

� 38� 5

� 39� 2

� 40� 8

� 41� >> list4 = A(A>0 & A<=8 & A~=3)

� 42� list4 =

� 43� 5

 �44� 2

� 45� 8

� 46� >> ~A

� 47� ans =

 �48� 3×3 logical array
� 49� 0 1 0

� 50� 0 0 0

� 51� 1 0 0

� 52� >> ~~A

� 53� ans =

� 54� 3×3 logical array
� 55� 1 0 1

� 56� 1 1 1

� 57� 0 1 1

� 58� >> isequal(A, ~~A)

� 59� ans =

 �60� logical

 �61� 0

[3] This is a Command Window
session of Example02_09.m. ↗

100 Chapter 2 Data Types, Operators, and Expressions

 2.9 Relational and Logical Operators 101

Logical Indexing
[6] In line 6, we are finding the elements in A such that they are greater than 6. This task can be accomplished by means
of logical indexing:

>> A(A>6)

The result is the same as line 6. In other words, the logical matrix Map can be viewed as an indexing matrix, and

>> A(Map)

outputs all the elements A(i,j) for which their corresponding Map(i,j) is true.
 Similarly, using the logical indexing, line 7 can be simplified as follows:

>> list3 = A(A>0 & A<=8 & A~=3)

In other words, the function find in lines 6 and 7 can be removed. This is demonstrated in line 8 and lines 43-45.

Logical NOT (~)
The logical NOT (~) reverses logical values: true becomes false, and false becomes true. If we apply it on a
numerical array (line 9), a nonzero value becomes false and a zero value becomes true (lines 49-51). If we apply
the logical NOT again on the previous result (line 10), the outcome is of course a logical array. Here, we want to show
that for a numerical array, in general,

(~~ A) ≠ A

This is demonstrated in lines 11 and 59-61. The function isequal (line 11) compares two arrays and outputs true if
they are equal in size and contents, otherwise outputs false.

Short-Circuit Logical AND (&&) and OR (||)
Let expr1 and expr2 be two logical expressions. The result of expr1&&expr2 is the same as expr1&expr2, but
the former is more efficient (i.e., less computing time). Similarly, the result of expr1||expr2 is the same as expr1|
expr2, but the former is more efficient. The operators && and || are called short-circuit logical operators (see Table
2.9b, page 99).
 In expr1&&expr2, expr2 is evaluated only if the result is not fully determined by expr1. For example, if
expr1 equals false, then the entire expression evaluates to false, regardless of the value of expr2. Under these
circumstances, there is no need to evaluate expr2 because the result is already known.
 Similarly, in expr1||expr2, expr2 is evaluated only if the result is not fully determined by expr1. For
example, if expr1 equals true, then the entire expression evaluates to true, regardless of the value of expr2.
Under these circumstances, there is no need to evaluate expr2 because the result is already known. #

 2.10 String Manipulations 102

2.10 String Manipulations

Example02_10a.m: String Manipulations
[2] Type and run the following statements, which demonstrate some string manipulations. Input your name and age as
shown in [3].

� 1� clear
� 2� a = 'Hello,';
� 3� b = 'world!';
� 4� c = [a, ' ', b];
� 5� disp(c)
� 6� name = input('What is your name? ', 's');
� 7� years = input('What is your age? ');
� 8� disp(['Hello, ', name, '! You are ', num2str(years), ' years old.'])
� 9� str = sprintf('Pi = %.8f', pi);
�10� disp(str)
�11� Names1 = [
�12� 'David '
�13� 'John '
�14� 'Stephen'];
�15� Names2 = char('David', 'John', 'Stephen');
�16� if isequal(Names1, Names2)
�17� disp('The two lists are equal.')
�18� end
�19� name = deblank(Names1(2,:));
�20� disp(['The name ', name, ' has ', num2str(length(name)), ' characters.'])

[3] This is a test run of
Example02_10a.m.

[1] A row vector of characters is also called a string. Single quotes are used to represent strings; e.g., 'ABC' represents
a row vector of three characters (2.4a[1]. page 78). Table 2.10 (page 104) summarizes some useful functions for string
manipulations.

� 21� >> Example02_10a
� 22� Hello, world!
� 23� What is your name? Lee
� 24� What is your age? 60
� 25� Hello, Lee! You are 60 years old.
� 26� Pi = 3.14159265
� 27� The two lists are equal.
� 28� The name John has 4 characters.
� 29� >>

102 Chapter 2 Data Types, Operators, and Expressions

2.10a String Manipulations

Example02_10b.m: A Simple Calculator
[1] This program uses function eval to create a simple calculator. Type and run the program, and see a test run in [2],
next page.

� 1� clear

� 2� disp('A Simple Calculator')

� 3� while true

� 4� expr = input('Enter an expression (or quit): ', 's');

� 5� if strcmp(expr,'quit')

� 6� break

� 7� end

� 8� disp([expr, ' = ', num2str(eval(expr))])

� 9� end

About Example02_10a.m
[4] Remember that a string is a row vector of characters. The most convenient way to concatenate strings is using
square brackets as shown in line 4; c is now a row vector of 13 characters.
 The function disp displays a data of any type (lines 5 and 22). A newline character (\n) is automatically output at
the end of the display. On the other hand, you need to append newline characters when using the function fprintf if
you want the cursor to move to the next line.
 Line 6 requests a data input from the screen. With the 's' as the second argument, the input data will be read as a
string, and you don't have to include the single quotes for the string (line 23). Without the 's' as the second argument,
you would have to use the single quotes ('') to input a string, otherwise the data will be read as a double (lines 7 and
24).
 The function sprintf (line 9) is the same as fprintf except that it writes to a string (rather than to the screen).
Here, we write the value of π with 8 digits after the decimal point in a string and then assign to the string str (line 9)
and display the string (lines 10 and 26).
 In lines 11-14, a single statement continues for 4 lines, without using ellipses (...). A newline character between a
pair of square brackets is treated as a semicolon plus an ellipsis. Thus, this statement (lines 11-14) creates 3 rows of
strings; it is a 3-by-7 matrix of char. Note that rows of a matrix must have the same length. That's why we pad the
first two strings with trailing blanks (lines 12-13) to make the lengths of the three strings equal.
 Another way to create a column of strings (i.e., a matrix of char) is using the function char. Line 15 creates a
column of strings exactly the same as that in lines 11-14. The function char automatically pads the strings with trailing
blanks so that the three strings have the same length.
 Lines 16-18 and 27 confirm the equality of the two matrices.
 The function deblank (line 19) removes trailing blanks from a string. Names1(2,:) refers to the entire 2nd
row (i.e., the string 'John '). After removing the trailing blanks, four characters remain in the string (lines 20 and
28). #

 2.10 String Manipulations 103

2.10b Example: A Simple Calculator

� 10� >> Example02_10b

� 11� A Simple Calculator

� 12� Enter an expression (or quit): 3+5
� 13� 3+5 = 8

� 14� Enter an expression (or quit): sin(pi/4) + (2 + 2.1^2)*3
� 15� sin(pi/4) + (2 + 2.1^2)*3 = 19.9371

� 16� Enter an expression (or quit): quit
� 17� >>

Tablee 2.10 String Manipulations
Function Description

A = char(a,b,...) Convert the strings to a matrix of rows of the strings, padding blanks

disp(X) Display value of variable

x = input(prompt,'s') Request user input

s = sprintf(format,a,b,...) Write formatted data to a string

s = num2str(x) Convert number to string

x = str2num(s) Convert string to number

x = str2double(s) Convert string to double precision value

x = eval(exp) Evaluate a MATLAB expression

s = deblank(str) Remove trailing blanks from a string

s = strtrim(str) Remove leading and trailing blanks from a string

tf = strcmp(s1,s2) Compare two strings (case sensitive)

tf = strcmpi(s1,s2) Compare two strings (case insensitive)

Help>MATLAB>Language Fundame
Details and More:

entals>Data Types>Characters and Strings; Data Type Conversion

 2.10 String Manipulations 104

[2] This is a test run
of the program

Example02_8b.m. #

104 Chapter 2 Data Types, Operators, and Expressions

 2.11 Expressions 105

2.11 Expressions

[1] An expression is a syntactic combination of data (constants or variables; scalars, vectors, matrices, etc.), functions
(built-in or user-defined), operators (arithmetic, relational, or logical), and special characters (see Table 2.11a, page
107). An expression always results in a value of certain type, depending on the operators.
 Table 2.11b (page 107) lists some frequently used math functions.

Example: Law of Sines
[2] The law of sines for an arbitrary triangle states that (see Wikipedia>Trigonometry):

 a
sinα

= b
sinβ

= c
sinγ

= abc
2A

= 2R (a)

where α , β, and γ are the three angles of a triangle; a, b, and c are the lengths of the
sides opposite to the respective angles; A is the area of the triangle; R is the radius of
the circumscribed circle of the triangle:

 R = abc
(a + b + c)(a − b + c)(b − c + a)(c − a + b)

 (b)

Knowing a, b, and c, then α , β, γ , and A can be calculated as follows:

 α = sin−1 a
2R

, β = sin−1 b
2R

, γ = sin−1 c
2R

 (c)

 A = abc
4R

 or A = 1
2
bcsinα (d)

α β

γ

ab

c

2R

Example02_11a.m: Law of Sines
[3] This script calculates the angles α , β, γ of a triangle and its area A, given three sides a = 5, b = 6, and c = 7.

� 1� clear
� 2� a = 5;
� 3� b = 6;
� 4� c = 7;
� 5� R = a*b*c/sqrt((a+b+c)*(a-b+c)*(b-c+a)*(c-a+b))
� 6� alpha = asind(a/(2*R))
� 7� beta = asind(b/(2*R))
� 8� gamma = asind(c/(2*R))
� 9� sumAngle = alpha + beta + gamma
�10� A1 = a*b*c/(4*R)
�11� A2 = b*c*sind(alpha)/2

2.11a Example: Law of Sines

Example02_11b.m: Law of Cosines
[1] The law of cosines states that (see Wikipedia>Trigonometry, with the same notations in 2.11a[2], last page):

 a2 = b2 + c2 − 2bccosα or α = cos−1 b
2 + c2 − a2

2bc
 (a)

With a = 5, b = 6, c = 7, the angle α , β, and γ can be calculated as follows:

� 1� clear

� 2� a = 5; b = 6; c = 7;

� 3� alpha = acosd((b^2+c^2-a^2)/(2*b*c))

� 4� beta = acosd((c^2+a^2-b^2)/(2*c*a))

� 5� gamma = acosd((a^2+b^2-c^2)/(2*a*b))

About Example02_11a.m
[5] Function sind (line 11) is the same as the function
sin in 1.2[7] (page 13) except that sind assumes
degrees (instead of radians) as the unit of the input
argument. Similarly, the function asind (lines 6-8),
inverse sine function, outputs an angle in degrees (the
function asin outputs an angle in radians).
 Line 5 calculates the radius of the circumscribed
circle according to Eq. (b), its output in lines 13-14.
 Lines 6-8 calculate the three angles according to
equations in (c), their outputs are in lines 15-20.
 Line 9 confirms that the sum of the three angles is
indeed 180 degrees (line 22).
 Lines 10-11 calculate the area of the triangle using
two different formulas in [2], and they indeed have the
same values (lines 23-26). #

[4] This is the screen output of
Example02_11a.m. →

[2] This is the screen output of
Example02_11b.m. The outputs are
consistent with those in 2.11a[4]. #

 2.11 Expressions 106

� 12� >> Example02_11a

� 13� R =

� 14� 3.5722

� 15� alpha =

� 16� 44.4153

� 17� beta =

� 18� 57.1217

� 19� gamma =

� 20� 78.4630

� 21� sumAngle =

� 22� 180

� 23� A1 =

� 24� 14.6969

� 25� A2 =

� 26� 14.6969

� 27� >>

� 6� >> Example02_11b

� 7� alpha =

� 8� 44.4153

� 9� beta =

� 10� 57.1217

� 11� gamma =

� 12� 78.4630

� 13� >>

106 Chapter 2 Data Types, Operators, and Expressions

2.11b Example: Law of Cosines

Tabl
Special

le 2.11a
 Characters

Special characters Description

[] Brackets

{} Braces

() Parentheses

' Matrix transpose

. Field access

... Continuation

, Comma

; Semicolon

: Colon

@ Function handle

Details
Help>MATLAB>Langua
and Elementary Operatio

Special

s and More:
age Fundamentals>Operators
ons>MATLAB Operators and
l Characters

 2.11 Expressions 107

Eleme
Table 2.11b

entary Math Functions
Function Description

sin(x) Sine (in radians)

sind(x) Sine (in degrees)

asin(x) Inverse sine (in radians)

asind(x) Inverse sine (in degrees)

cos(x) Cosine (in radians)

cosd(x) Cosine (in degrees)

acos(x) Inverse cosine (in radians)

acosd(x) Inverse cosine (in degrees)

tan(x) Tangent (in radians)

tand(x) Tangent (in degrees)

atan(x) Inverse tangent (in radians)

atand(x) Inverse tangent (in degrees)

atan2(y,x) Four-quadrant inverse tangent (radians)

atan2d(y,x) Four-quadrant inverse tangent (degrees)

abs(x) Absolute value

sqrt(x) Square root

exp(x) Exponential (base e)

log(x) Logarithm (base e)

log10(x) Logarithm (base 10)

factorial(n) Factorial

sign(x) Sign of a number

rem(a,b) Remainder after division

mod(a,m) Modulo operation

Help>MATLA
Details and More:

AB>Mathematics>Elementary Math

 2.12 Example: Function Approximation 108

2.12 Example: Function Approximation

Taylor Series
[1] At the hardware level, your computer can only perform simple arithmetic calculations such as addition, subtraction,
multiplication, division, etc. Evaluation of a function value such as sin(π 4) is usually carried out with software or
firmware. But how? In this section, we use sin(x) as an example to demonstrate the idea. This section also guides you
to familiarize yourself with the way of thinking when using matrix expressions.
 The sine function can be approximated using a Taylor series (Section 9.6 gives more detail on the Taylor series):

 sin x = x − x
3

3!
+ x

5

5!
− x

7

7!
+ ... (a)

The more terms, the more accurate the approximation. ↙

Example02_12a.m: Scalar Expressions
[2] This script evaluates sin(π 4)using the Taylor series
in Eq. (a). The screen output is shown in [3]. →

� 1� clear

� 2� x = pi/4;

� 3� term1 = x;

� 4� term2 = -x^3/(3*2);

� 5� term3 = x^5/(5*4*3*2);

� 6� term4 = -x^7/(7*6*5*4*3*2);

� 7� format long

� 8� sinx =term1+term2+term3+term4

� 9� exact = sin(x)

�10� error = (sinx-exact)/exact

About Example02_12a.m
[4] We used 4 terms to calculate the function value sin(x)
(lines 2-8, 11-12). Line 9 calculates the function values
using the built-in function sin (line 14), which is used as
a baseline for comparison. Line 10 calculates the error of
the approximation (line 16). We conclude that, with
merely four terms, the program calculates a function
value to the accuracy of an order of 10−7. #

� 11� sinx =

� 12� 0.707106469575178

� 13� exact =

� 14� 0.707106781186547

� 15� error =

� 16� -4.406850247592559e-07

[1] In theory, an infinite number of terms of polynomials is required to achieve the exact value of sin(x). We need a
general representation of these terms. We may rewrite the Taylor series in Eq. 2.12a(a) as follows:

 sin x = (−1)k−1 x2k−1

(2k −1)!k=1

∞

∑ (a)

We now use a for-loop (Sections 1.14, 3.4) to calculate sin(π 4).

[3] This is the screen output.

108 Chapter 2 Data Types, Operators, and Expressions

2.12a Scalar Expressions

2.12b Use of For-Loop

Example02_12b.m: Use of For-Loop
[2] Type and run this program. The screen output is the same as 2.12a[3], last page.

� 1� clear

� 2� x = pi/4; n = 4; sinx = 0;

� 3� for k = 1:n

� 4� sinx = sinx + ((-1)^(k-1))*(x^(2*k-1))/factorial(2*k-1);

� 5� end

� 6� format long

� 7� sinx

� 8� exact = sin(x)

� 9� error = (sinx-exact)/exact

About Example02_12b.m
[3] In line 2, the variable sinx is initialized to zero. The statement within the for-loop (line 4) runs four passes. In
each pass, the variable k is assigned 1, 2, 3, and 4, respectively; a term is calculated according to the formula in Eq. (a)
and added to the variable sinx. At the completion of the for-loop, sinx has the function value; the output is the same
as 2.12a[3], last page. To increase the accuracy of the value, you may simply increase the number of items (see [4], for
example).

Example02_12c.m: Vector Expressions
[1] This script produces the same outputs as 2.12a[3], last page, using a vector expression (line 4) in place of the for-
loop used in Example02_12b.m.

� 1� clear

� 2� x = pi/4; n = 4; k = 1:n;

� 3� format long

� 4� sinx = sum(((-1).^(k-1)).*(x.^(2*k-1))./factorial(2*k-1))

� 5� exact = sin(x)

� 6� error = (sinx-exact)/exact

 2.12 Example: Function Approximation 109

�sinx =
� 0.707106781179619
�exact =
� 0.707106781186547
�error =
 -9.797690960678494e-12

[4] This is the screen output when 6
items are used (i.e., change to n = 6
in line 2). Note that the error reduces

to an order of 10−12. #

2.12c Vector Expressions

 2.12 Example: Function Approximation 110

About Example02_12c.m
[2] In line 2, the variable k is created as a row vector of four elements; k = [1,2,3,4]. The for-loop in
Example02_12b.m is now replaced by a vector expression (line 4), which uses the function sum and element-wise
operators (.^, .*, and ./). To help you understand the statement in line 4, we break it into several steps:

� step1 = k-1
� step2 = (-1).^step1
� step3 = 2*k-1
� step4 = x.^step3
� step5 = step2.*step4
� step6 = factorial(step3)
� step7 = step5./step6
� step8 = sum(step7)
� sinx = step8

Using k = [1,2,3,4], following the descriptions of element-wise operations (2.8a[6-7], pages 95-96) and the
function sum for vectors (2.7[5], page 90), we may further elaborate these steps as follows:

� step1 = [0,1,2,3]
� Step2 = (-1).^[0,1,2,3] ≡ [1,-1,1,-1]
� step3 = [1,3,5,7]
� step4 = x.^[1,3,5,7] ≡ [x,x^3,x^5,x^7]
� step5 = [1,-1,1,-1].*[x,x^3,x^5,x^7] ≡ [x,-x^3,x^5,-x^7]
� step6 = factorial([1,3,5,7]) ≡ [1,6,120,5040]
� step7 = [x,-x^3,x^5,-x^7]./[1,6,120,5040] ≡ [x,-x^3/6,x^5/120,-x^7/5040]
� step8 = x-x^3/6+x^5/120-x^7/5040
� sinx = x-x^3/6+x^5/120-x^7/5040

Substituting x with pi/4, we have sinx = 0.707106469575178. #

Example02_12d.m: Matrix Expressions
[1] This script calculates sin(x) for various x values and produces a graph as shown in [2], next page. A matrix
expression (line 6) is used in this script.

� 1� clear

� 2� x = linspace(0,pi/2,20);

� 3� n = 4;

� 4� k = 1:n;

� 5� [X, K] = meshgrid(x, k);

� 6� sinx = sum(((-1).^(K-1)).*(X .^ (2*K-1))./factorial(2*K-1));

� 7� plot(x*180/pi, sinx, 'o', x*180/pi, sin(x))

� 8� title('Approximation of sin(x)')

� 9� xlabel('x (deg)')

�10� ylabel('sin(x) (dimensionless)')

�11� legend('Approximation', 'Exact', 'Location', 'southeast')

110 Chapter 2 Data Types, Operators, and Expressions

2.12d Matrix Expressions

 2.12 Example: Function Approximation 111

Function meshgrid
[3] Line 2 creates a row vector of 20 x-values using the function linspace (2.6a[5], page 85). Line 4 creates a row
vector of four integers.
 Line 5 generates 2-D grid coordinates X and K based on the coordinates in the row vectors x and k; the sizes of X
and K are also based on the sizes of x and k. If the length of x is nx and the length of k is nk, then both X and K are
nk-by-nx matrices; each row of X is a copy of x, and each column of K is a copy of k'. In other words, line 5 is
equivalent to the following statements:

� nx = length(x); nk = length(k);

� X = repmat(x, nk, 1);

� K = repmat(k', 1, nx);

where the function repmat was used in lines 5-6 of Example01_06.m (page 25) and explained in 1.6[11-12] (pages
26-27). Actually, lines 5-6 of Example01_06.m can be replaced by the following statement (try it yourself):

[Time, Theta] = meshgrid(time, theta)

 In line 5 of Example02_12d.m, last page, both X and K are matrices. X contains angle values varying along column-
direction while keeping constant in row-direction. K contains item-numbers (1, 2, 3, and 4) varying along row-direction
while keeping constant in column-direction. Please verify this yourself.

Matrix Expression (Line 6)
Analysis of line 6 is similar to line 4 of Example02_12c (see 2.12c[2], last page). However, now we're dealing with
matrices. The argument of the function sum is now a 4-by-20 matrix, each column corresponding to an angle value,
each row corresponding to a k value. The function sum sums up the four values in each column (2.7[6], page 91),
resulting in a row vector of 20 values, which are plotted as circular marks in [2].

Plotting Marks and Curve
Line 7 plots the 20 values with circular marks, along with the exact function values, by default, using a solid line. Line
11 adds legends (Section 5.7) on the lower-right corner of the graphic area. #

[2] Example02_12d.m plots an
approximation of sin(x) using 4-term Taylor
series for various x values (circular marks);
it also plots a solid curve representing the

exact function values.

Example02_12e.m: Multiple Curves
[1] This script plots four approximated curves and an exact curve of sin(x) as shown in [2], the four approximated curves
corresponding to the Taylor series of 1, 2, 3, and 4 items, respectively.

� 1� clear

� 2� x = linspace(0,pi/2,20);

� 3� n = 4;

� 4� k = 1:n;

� 5� [X, K] = meshgrid(x, k);

� 6� sinx = cumsum(((-1).^(K-1)).*(X .^ (2*K-1))./factorial(2*K-1));

� 7� plot(x*180/pi, sinx(1,:), '+-', ...

� 8� x*180/pi, sinx(2,:), 'x-', ...

� 9� x*180/pi, sinx(3,:), '*', ...

�10� x*180/pi, sinx(4,:), 'o', ...

�11� x*180/pi, sin(x))

�12� title('Approximation of sin(x)')

�13� xlabel('x (deg)')

�14� ylabel('sin(x) (dimensionless)')

�15� legend('1 term', '2 terms', '3 terms', '4 terms', 'Exact', ...

�16� 'Location', 'southeast')

[2] Example02_12e.m plots four
approximated curves and an exact
curve of sin(x), for comparison.

About Example02_12e.m
[3] Line 6 looks like line 6 in Example02_12d.m
except that the function cumsum (2.7[6], page 91)
is used in place of sum. The function cumsum
calculates the cumulative sums of the four values in
each column, resulting in a 4-by-20 matrix, the kth
row representing the approximated function values
when k terms are added up. Lines 7-11 plot the
four approximated curves, each a row of the
function values, and the exact curve.

Line Styles and Marker Types
[4] In line 7, the notation '+-' means a plus marker and a solid line style. Similarly, in line 8, 'x-' means a cross
marker and a solid line style. Table 5.5a (page 226) lists various line styles and marker types.

Legend
Lines 15-16 add a Legend (Section 5.7) on the "southeast" (i.e., the lower-right) of the Axes. #

 2.12 Example: Function Approximation 112112 Chapter 2 Data Types, Operators, and Expressions

2.12e Multiple Curves

[4] Workspace.

 2.13 Example: Series Solution of a Laplace Equation 113

2.13 Example: Series Solution of a Laplace Equation

Laplace Equations
[1] Laplace equations have many applications (see Wikipedia>Laplace's equation or any Engineering Mathematics
textbooks). Consider a Laplace equation in a two-dimensional, cartesian coordinate system:

∂2φ
∂x2

+ ∂2φ
∂y2

= 0

subject to the boundary conditions φ(x,0) = φ(x,1) = φ(1, y) = 0 and φ(0, y) = y(1− y) , where 0 ≤ x ≤1 and 0 ≤ y ≤1 .
 A series solution of the equation is

 φ(x, y) = 4 1− cos(kπ)
(kπ)3k=1

∞

∑ e−kπx sin(kπ y) (a)

You may verify the solution by substituting it into the equation and the boundary conditions.

Example02_13.m: Series Solution of a Laplace Equation
[2] This script calculates the solution φ(x, y) according to Eq. (a) and plots a three-dimensional surface φ = φ(x, y) [3].

� 1� clear

� 2� k = 1:20;

� 3� x = linspace(0,1,30);

� 4� y = linspace(0,1,40);

� 5� [X,Y,K] = meshgrid(x, y, k);

� 6� Phi = sum(4*(1-cos(K*pi))./(K*pi).^3.*exp(-K.*X*pi).*sin(K.*Y*pi), 3);

� 7� surf(x, y, Phi)

� 8� xlabel('\itx')

� 9� ylabel('\ity')

�10� zlabel('\phi(\itx\rm,\ity\rm)')

[3] This program plots a surface
representing the solution Eq. (a) of

a Laplace equation.

 2.13 Example: Series Solution of a Laplace Equation 114

3-D Grid Coordinates Created with meshgrid
[5] Line 5 generates 3-D grid coordinates X, Y, and K defined by the row vectors x, y, and k. If the lengths of x, y, and
k are nx, ny, and nk, respectively, then X, Y, and K have sizes ny-by-nx-by-nk (see [4], last page). This statement is
equivalent to the following statements:

� nx = length(x); ny = length(y); nk = length(k);

� X = repmat(x, ny, 1, nk);

� Y = repmat(y', 1, nx, nk);

� K = repmat(reshape(k,1,1,nk), ny, nx, 1);

The function reshape in the last statement reshapes the vector k to a 1×1× nk vector, which is called a page-vector
(remember that a 1×m matrix is a row-vector, and an m ×1 matrix is a column-vector). Note that X varies in column-
dimension while keeping constant in both row-dimension and page-dimension; Y varies in row-dimension while keeping
constant in both column-dimension and page-dimension; K varies in page-dimension while keeping constant in both row-
dimension and column-dimension.

3-D Array Expressions (Line 6)
While the expression in line 6 of Example02_12d.m (page 110) is a matrix expression, the expression in line 6, last page,
is a 3D extension of matrix expressions.
 Remember, by default, function sum sums up the values along the first dimension (i.e., the row-dimension, see
2.7[6], page 91); however, you may specify the dimension along which the summing is performed. Here, in line 6, the
second argument of the function sum specifies that the summing is along the third-dimension (i.e., the page-dimension),
resulting in a 40-by-30 matrix.

Function surf
In line 9 of Example01_06.m (page 25), the function surf takes three matrices as input arguments. Here, in line 7 (last
page) the first two input arguments are row vectors. Line 7 is equivalent to the following statements

� nx = length(x); ny = length(y);

� X = repmat(x, ny, 1);

� Y = repmat(y', 1, nx);

� surf(X, Y, Phi);

Greek Letters and Math Symbols
Lines 8-10 add label texts to the plot. Here, to display the Greek letter φ , the character sequence \phi is used (line 10).
 The character sequence \it (italicize) is used to signal the beginning of a series of italicized characters, and \rm is
used to signal the removing of the italicization.
 The character sequence for frequently used Greek letters and math symbols is listed in Table 5.6a (page 229). #

114 Chapter 2 Data Types, Operators, and Expressions

 2.14 Example: Deflection of Beams 115

2.14 Example: Deflection of Beams
Simply Supported Beams
[1] Consider a simply supported beam subject to a force F (see [2], source:
https://en.wikipedia.org/wiki/File:Simple_beam_with_offset_load.svg, by
Hermanoere). The beam has a cross section of width w and height h, and a
Young's modulus E. The deflection y of the beam as a function of x is
(Reference: W. C. Young, Roark's Formula for Stress & Strain, 6th ed, p. 100)

y = −θx + Rx3

6EI
− F
6EI

< x − a >3

where

θ = Fa
6EIL

(2L − a)(L − a), R = F
L
(L − a), I = wh

3

12

< x − a >3 =
0, if x ≤ a

(x − a)3, if x > a

�
�
�

��

Physical meanings of these quantities are as follows: θ is the clockwise
rotational angle of the beam at the left end; R is the reaction force on the
beam at the left end; I is the area moment of inertia of the cross section.
 In this section, we'll plot a deflection curve and find the maximum
deflection and its corresponding location, using the following parameters:

 w = 0.1 m, h = 0.1 m, L = 8 m, E = 210 GPa, F = 3000 N, a = L 4 →

x

y

[2] This is the simply
supported beam considered

in this section.

Example02_14.m: Deflection of Beams
[3] This script produces a graphic output shown in [4] (next page) and a text output shown in [5] (next page).

� 1� clear

� 2� w = 0.1;

� 3� h = 0.1;

� 4� L = 8;

� 5� E = 210e9;

� 6� F = 3000;

� 7� a = L/4;

� 8� I = w*h^3/12;

� 9� R = F/L*(L-a);

�10� theta = F*a/(6*E*I*L)*(2*L-a)*(L-a);

�11� x = linspace(0,L,100);

�12� y = -theta*x+R*x.^3/(6*E*I)-F/(6*E*I)*((x>a).*((x-a).^3));

�13� plot(x,y*1000)

�14� title('Deflection of a Simply Supported Beam')

�15� xlabel('x (m)'); ylabel('Deflection (mm)')

�16� y = -y;

�17� [ymax, index] = max(y);

�18� fprintf('Maximum deflection %.2f mm at x = %.2f m\n', ymax*1000, x(index))

 2.14 Example: Deflection of Beams 116

[4] This program plots a curve
representing the deflection of the simply

supported beam in [1-2], last page.

[5] Text output of the program.

Logical Operators in Numeric Expressions
[6] The function

< x − a >3 =
0, if x ≤ a

(x − a)3, if x > a

�
�
�

��

is implemented (see line 12) using a logical operator

(x>a).*((x-a).^3)

Remember that, in a numeric expression, true is converted to 1 and false is converted to 0.

[7] This is the solution
output by a program using
finite element methods; the

maximum deflection
(12.783 mm) is consistent

with the value in [5]. #

>> Example02_14

Maximum deflection 12.78 mm at x = 3.56 m

116 Chapter 2 Data Types, Operators, and Expressions

Free Vibrations of a Supported Machine
[1] The figure shown in [2] (source: https://commons.wikimedia.org/wiki/
File:Mass_spring_damper.svg, by Pbroks13) represents a machine supported by a
layer of elastic, energy-absorbing material. In the figure, m is the mass of the
machine; k is the spring constant of the support; i.e., Fs = −kx, where Fs is the
elastic force acting on the machine and x is the displacement of the machine; c is
the damping constant; i.e., Fd = −c�x, where Fd is the damping force acting on the
machine and �x is the velocity of the machine. (Reference: Wikipedia>Damping.)
 Imagine that you lift the machine upward a distance δ from its static
equilibrium position and then release. The machine would vibrate up-and-down. It
is called a free vibration, since no external forces are involved.
 To derive the governing equation, consider that the machine moves with a
displacement x and a velocity �x . The machine is subject to an elastic force
Fs = −kx and a damping force Fd = −c�x . Newton's second law states that the
resultant force acting on the machine is equal to the multiplication of the mass m
and its acceleration ��x . We have −kx − c�x = m��x , or

m��x + c�x + kx = 0
with the initial conditions (ICs)

 x(0) = δ , �x(0) = 0 →

 2.15 Example: Vibrations of Supported Machines 117

2.15 Example: Vibrations of Supported Machines

[2] In this section, we use this
mass-spring-damper model to
represent a machine supported
by a layer of elastic, energy-

absorbing material.

Undamped Free Vibrations
[3] First, we neglect the damping effects of the supporting material, i.e., c = 0 . The equation reduces to

 m��x + kx = 0, ICs: x(0) = δ , �x(0) = 0 (a)

The solution for Eq. (a) is
 x(t) = δ cosωt (b)

where ω (with SI unit rad s) is the natural frequency of the undamped system,

 ω = k
m

 (c)

You may verify the solution (b) by substituting it to Eq. (a).
 The natural period (with SI unit s) is then

 T = 2π
ω

 (d)

 Example02_15a.m ([4], next page) calculates and plots the solution, using the following parameters

m = 1 kg , k = 100 N m , δ = 0.2 m

Note that these values are arbitrarily chosen for instructional purposes; they may not be practical in the real-world.

m

k c

x

2.15a Undamped Free Vibrations

Example02_15a.m: Undamped Free Vibrations
[4] This program calculates and plots the solution x(t) in
Eqs. (b, c), last page. The graphic output is shown in [5].

� 1� clear

� 2� m = 1; k = 100; delta = 0.2;

� 3� omega = sqrt(k/m);

� 4� T = 2*pi/omega;

� 5� t = linspace(0, 3*T, 100);

� 6� x = delta*cos(omega*t);

� 7� axes('XTick', T:T:3*T, 'XTickLabel', {'T','2T','3T'});

� 8� axis([0, 3*T, -0.2, 0.2])

� 9� grid on

�10� hold on

�11� comet(t, x)

�12� title('Undamped Free Vibrations')

�13� xlabel(['Time (T = ', num2str(T), ' sec)'])

�14� ylabel('Displacement (m)')

[1] Now we include the damping effects of the supporting material and assume c = 1 N (m s) . The equation becomes

 m��x + c�x + kx = 0, ICs: x(0) = δ , �x(0) = 0 (a)

There exists a critical damping cc = 2mω such that when c > cc , the machine doesn't oscillate and it is called an over-
damped case. When c < cc , the machine oscillates and it is called an under-damped case. When c = cc , the machine
also doesn't oscillate and it is called a critically-damped case. In our case,

ω = k
m

= 100N m
1 kg

= 10 rad s

cc = 2mω = 2(1 kg)(10 rad/s) = 20 N (m s)

Since c < cc , the system is an under-damped case. The solution for the under-damped case is

 x(t) = δe
− ct

2m (cosω dt +
c

2mω d

sinω dt) (b)

where ω d (with SI unit rad s) is the natural frequency of the damped system,

 ω d =ω 1− c
cc

�
��

�
��

2

 (c)

where c cc is called the damping ratio. In our case c cc = 0.05. Note that, for small damping ratios, ω d ≈ω .

[5] This is the output of Example02_15a.m.
Without damping effects, the machine vibrates
forever; i.e., the amplitudes never fade away. #

 2.15 Example: Vibrations of Supported Machines 118118 Chapter 2 Data Types, Operators, and Expressions

2.15b Damped Free Vibrations

 2.15 Example: Vibrations of Supported Machines 119

Example02_15b.m: Damped Free Vibrations
[2] This program calculates and plots the solution x(t) in
Eqs. (b, c), last page. The graphic output is shown in [3].

� 1� clear

� 2� m = 1; k = 100; c = 1; delta = 0.2;

� 3� omega = sqrt(k/m);

� 4� cC = 2*m*omega;

� 5� omegaD = omega*sqrt(1-(c/cC)^2);

� 6� T = 2*pi/omegaD;

� 7� t = linspace(0, 3*T, 100);

� 8� x = delta*exp(-c*t/(2*m)).*(cos(omegaD*t)+c/(2*m*omegaD)*sin(omegaD*t));

� 9� axes('XTick', T:T:3*T, 'XTickLabel', {'T','2T','3T'});

�10� axis([0, 3*T, -0.2, 0.2])

�11� grid on

�12� hold on

�13� comet(t, x)

�14� title('Damped Free Vibrations')

�15� xlabel(['Time (T = ', num2str(T), ' sec)'])

�16� ylabel('Displacement (m)')

[1] Now, imagine that there is a rotating part in the machine and, due to eccentric rotations, the rotating part generates an
up-and-down harmonic force F sinω f t on the support, where ω f is the angular frequency of the rotating part and F is
the centrifugal forces due to the eccentric rotations. We assume F = 2 N and ω f = 2π rad s (i.e., 1 Hz). Adding this
force to Newton's second law, we have the equation
 m��x + c�x + kx = F sinω f t (a)

 The solution of Eq. (a) is a superposition of two parts: First, the free vibrations caused by the initial conditions. This
part will eventually vanish due to the damping effects, as shown in 2.15b[3], and is called the transient response.
Second, the vibrations caused by the harmonic forces. This part remains even after the transient vibrations vanish and is
called the steady-state response, described by
 x(t) = xm sin(ω f t −ϕ) (b)

where xm is the amplitude and ϕ is the phase angle (see Wikipedia>Phase (wave)) of the vibrations,

 xm =
F k

1− ω f ω()2�
��

�
��

2

+ 2 c cc() ω f ω()�
�

�
�
2

 (c)

 ϕ = tan−1
2 c cc() ω f ω()
1− ω f ω()2

 (d)

[3] The output of Example02_15b.m. Due
to the inclusion of the damping effects, the

vibrations gradually fade away. #

2.15c Harmonically Forced Vibrations

 2.15 Example: Vibrations of Supported Machines 120

Example02_15c.m: Forced Vibrations
[2] This program plots the steady-state response x(t) in Eqs. (b, c, d), last page. The graphic output is shown in [3].

� 1� clear
� 2� % System parameters
� 3� m = 1; k = 100; c = 1;
� 4� f = 2; omegaF = 2*pi;
� 5�
� 6� % System response
� 7� omega = sqrt(k/m);
� 8� cC = 2*m*omega;
� 9� rC = c/cC;
�10� rW = omegaF/omega;
�11� xm = (f/k)/sqrt((1-rW^2)^2+(2*rC*rW)^2);
�12� phi = atan((2*rC*rW)/(1-rW^2));
�13� T = 2*pi/omegaF;
�14� t = linspace(0, 3*T, 100);
�15� x = xm*sin(omegaF*t-phi);
�16�
�17� % Graphic output
�18� axes('XTick', T:T:3*T, 'XTickLabel', {'T','2T','3T'});
�19� axis([0, 3*T, -0.2, 0.2])
�20� grid on
�21� hold on
�22� comet(t, x)
�23� title('Harmonically Forced Vibrations')
�24� xlabel(['Time (T = ', num2str(T), ' sec)'])
�25� ylabel('Displacement (m)')
�26� text(T,-0.1,['Amplitude = ', num2str(xm*1000), ' mm'])
�27� text(T,-0.12,['Phase angle = ', num2str(phi*180/pi), ' degrees'])

[3] The output of
Example02_15c.m. #

120 Chapter 2 Data Types, Operators, and Expressions

 2.16 Additional Exercise Problems 121

2.16 Additional Exercise Problems

2

1

3

x

y
76 mm

76 mm

12 mm

12 mm

10
2

m
m

12 mm

Problem02_01: Moment of Inertia of an Area
Write a script to calculate the moments of inertia (Wikipedia>Second moment of area) Ix and I y of a Z-shape area
shown below. Check your results with the following data: Ix = 4,190,040 mm4 and I y = 2,756,960 mm4. A hand-
calculation procedure is listed in the table below, in which the Z-shape area is divided into three rectangles; their area
properties are calculated separately and then totaled.

b h A

Rectangle mm mm mm mm mm4 mm4 mm2 mm4 mm4 mm4 mm4

1 76 12 -32 45 10944 438976 912 1846800 933888 1857744 1372864

2 12 78 0 0 474552 11232 936 0 0 474552 11232

3 76 12 32 -45 10944 438976 912 1846800 933888 1857744 1372864

Total 2760 4190040 2756960

x y Ix Ax 2Ay 2I y Ix I y

Notes: Ix = bh
3 12, I y = hb

3 12, A = bh, Ix = Ix + Ay
2 , I y = I y + Ax

2

Problem02_02: Binomial Coefficient
The binomial coefficient (Wikipedia>Binomial coefficient) is given by

Cx
n = n!

x!(n − x)!

where both n and x are integer number and x ≤ n . Write a script that allows the user to input the values of n and x,
calculates Cx

n , and reports the result.
 Use the following data to verify your program: C3

10 = 120, C10
15 = 3003, and C4

100 = 3,921,225.

 2.16 Additional Exercise Problems 122

Problem02_03: Binomial Distribution
The binomial distribution (Wikipedia>Binomial
distribution) is given by

f (x) = Cx
n px (1− p)n−x , x = 0, 1, 2, ... , n

where p is a real number (0 < p <1) and Cx
n is given in

Problem02_02, last page. Write a script that allows the
user to input the values of n and p, and produces a
binomial distribution curve.
 Use n = 100 and p = 0.5 to verify your program,
which produces a binomial distribution curve as shown to
the right.

Problem02_04: Thermal Stresses in a Pipe
The radial stress σ r and hoop stress σ h in a long pipe due to a temperature Ta at its inner surface of radius a and a
temperature Tb at its outer surface of radius b are, respectively, (A. H. Burr and J. B. Cheatham, Mechanical Analysis
and Design, 2nd ed., Prentice Hall, p. 496.)

σ r =
αE(Ta −Tb)
2(1−ν)ln(b a)

a2

b2 − a2
b2

r2
−1�

��
�
��
ln(b a)− ln(b r)

�

�
�

�

�
�

σ h =
αE(Ta −Tb)
2(1−ν)ln(b a)

1− a2

b2 − a2
b2

r2
+1�

��
�
��
ln(b a)− ln(b r)

�

�
�

�

�
�

where r is the radial coordinate of the pipe (originated at
the center), E is the Young's modulus, ν is the Poisson's
ratio, and α is the coefficient of thermal expansion.
 Write a script that allows the user to input the values
of a, b, Ta and Tb , and generates a σ r -versus-r curve and
a σ h -versus-r curve as shown to the right, which uses the
following data: a = 6 mm, b = 12 mm, Ta = 260

�C,
Tb = 150

�C, E = 206 GPa, v = 0.3, α = 2 ×10−5 �C.

122 Chapter 2 Data Types, Operators, and Expressions

 2.16 Additional Exercise Problems 123

Problem02_05: Displacement of a Piston
The displacement p of the piston shown in 6.3[3-7] (page
261) is given by

p = acosθ + b2 − asinθ

Write a script to plot the displacement p as a function of angle
θ (in degrees; 0 ≤θ ≤ 360�) when a = 1.1 and b = 2.7.

Problem02_06: Calculation of π
The ratio of a circle's circumference to its diameter, π , can be approximated by the following formula:

π = 4
8k +1

− 2
8k + 4

− 1
8k + 5

− 1
8k + 6

�
��

�
��k=0

n

∑ 1
16

�
��

�
��
k

Write a script that allows the user to input the value of n, and outputs the calculated value of π .

Problem02_07
Write a script to generate a mesh, using mesh(x,y,z),
defined by

z(x, y) = 32
3π

sin(kπ 4)
k2k=0

50

∑ sin(kπ x)cos(kπ y)

	9781630573973_Links.pdf
	Buy this book
	About this book
	SDC Publications

