SOLIDWORKS 2024 Basic Tools

Getting Started with Parts, Assemblies and Drawings

Paul Tran CSWE, CSWI

AISS
Better Textbooks. Lower Prices.
www.SDCpublications.com

Visit the following websites to learn more about this book:

CHAPTCTS

Daric solid Modeling - Extrude Options

Basic Solid Modeling Extrude Options

Upon successful completion of this lesson, you will be able to:

* Sketch on planes and/or planar surfaces
* Use the sketch tools to construct geometry
* Add the geometric relations or constraints
* Add/modify dimensions
* Explore the different extrude options

The following 5 basic steps will be demonstrated throughout this exercise:

* Select the sketch plane (or sketch face)
* Activate Sketch toolbar
* Sketch the profile using the sketch tools
* Define the profile with dimensions or relations
* Extrude the profile

Be sure to review the self-test questionnaires at the end of the lesson prior to moving to the next chapter.

Basic Solid Modeling Extrude Options

Tools Needed:

Line

1 Add Geometric
h Relations

Dimension

Parent \& Child explained:

The sample part below has 1 Parent feature (the Base) and 3 Child features (the Boss, the Holes, and the Fillets).

A. First, the Parent feature is created.
C. The features that remove material such as Extruded Cuts or Holes are created next.
D. Finally, the Fillets and Chamfers features are added last.

1. Starting a new Part:

From the File menu, select New / Part, or click the New icon.

Select the Part template from either the Templates or Tutorial folders.
Click OK. A new part template is open.

2. Changing the Scene:

From the View (Heads-up) toolbar, click the Apply Scene button (arrow) and select the Plain White option (arrow).

By changing the scene color to Plain White, we can see the colors of the sketch entities and their dimensions a little better.

To show the Origin, click the View, Hide /Show dropdown menu and select Origins.

The Blue color Origin is the Zero position of the part and the Red Origin is the Zero position of the sketch.

SOLIDWORKS 2024 | Basic Tools | Basic Solid Modeling | Extrude Options

3. Starting a new Sketch:

Select the Front plane from the FeatureManager tree and click the Sketch dropdown arrow and select the Sketch command to start a new sketch.

A sketch is usually created first, relations and dimensions are added after, and then it gets extruded into a 3D feature.

From the CommandManager toolbar, select the Line command.

OPTIONAL:

Right-Drag to display the Mouse-Gesture wheel and select the Line command from it. (See the Introduction section, page XVIII for details on customizing the Mouse Gesture.)
Mouse-Gesture

Hover the mouse cursor over the Origin point; a yellow feedback symbol appears to indicate a relation (Coincident) is going to be added automatically to the $1^{\text {st }}$ endpoint of the line. This endpoint will be locked at the zero position.

Note: There are 3 different ways to use the line tool: Single Line, Multiple Lines (connecting), and Line-to-Arc (transitioning from a line to a tangent arc).

The following steps are examples to demonstrate how to use all embedded functions of the Line command. We will delete the example and go back to the lesson on page 3-8.
A. To sketch a single line, use the click + hold + drag method:

With the Line tool already selected, click on the Origin point to start the line (press and hold the mouse button), drag the cursor upward, look for the vertical relation symbol, and release the mouse button.

Only 1 line is drawn; the mouse cursor is disconnected from the line.

B. To sketch multiple lines, use the click + release + click method.

Position the mouse cursor at the top end point of the first line and click to start the line (do not hold the mouse button this time).
Move the cursor to the right and look for the Horizontal relation symbol and click to complete the line.

The next line is connecting to the previous line. Move the mouse cursor downward, look for the vertical relation symbol and click to complete the line.

The next line is connecting to the previous line.

C. To change from a Line to a Tangent Arc, use the click + release + press A method.

Start a new line at the bottom of the $3^{\text {rd }}$ line and move the mouse cursor outward approx. as shown.

Move the cursor back and forth, up and down to see how the Tangent Arc maintains its tangent relation with the line that it is connecting to.

Based on the starting point, the arc changes its direction from negative to positive when the cursor moves
 pass its zero point.

Move the mouse cursor towards the lower right side and click to complete the arc.
 moving on to step number 4 (press Control + A then push Delete).

4. Using the Click + Hold + Drag technique:

Select the Line command. Click the Origin point and hold the mouse button to start the line at point 1, drag upwards to point 2, then release the mouse button.

Continue adding other lines using the Click-Hold-Drag technique.
The relations like Horizontal and Vertical are added automatically to each sketch line. Other relations like Collinear and Equal are added manually.

The size and shape of the profile will be corrected in the next few steps.

System Feedback

While sketching the lines, watch for the System Feedback Symbols such as for Horizontal, and for IVertical Auto Relations.

5. Adding Geometric Relations*:

Click Add Relation h under Display/Delete Relations - OR - select Tools / Relations / Add.

Select the $\mathbf{4}$ lines shown below.
Click Equal from the Add Geometric Relation dialog box. This relation makes the length of the four selected lines equal.

Equal Relations

Adding the EQUAL relations to these lines eliminates the need to dimension each line.

Geometric relations can be created manually or automatically. The next few steps in this chapter will demonstrate how geometric relations are added manually.

[^0](When applying geometric relations between entities, one of them should be a 2 D entity and the other can either be a 2D sketch entity, a model edge, a plane, an axis, or a curve.)

SOLIDWORKS 2024 | Basic Tools | Basic Solid Modeling | Extrude Options

6. Adding a Collinear relation**:

Select the Add Relation \boldsymbol{h} command again.
Select the $\mathbf{3}$ lines shown below.
Click Collinear from the Add Geometric Relations dialog box.
Click $\mathbf{O K}$ to accept the relation.

Collinear Relations

Adding a Collinear relation to these lines will force them to lie at the same straight line.
Only one dimension is needed to drive the height of all 3 lines.

** Collinear relations can be used to constrain the geometry as follows:
Collinear between a line and another line(s) (2D and 2D).
Collinear between a line(s) to a linear edge of a model (2D and 3D).

Geometric Relation Examples

Two or more points are aligned vertically.

Horizontal

7. Adding the horizontal dimensions:

Select from the Sketch toolbar - OR - press the letter D on the keyboard, and add the dimensions shown below (follow the 3 steps A, B and C).

C. Place the dimension \qquad
A. Click line $1 \longrightarrow$ Click line $2 \longrightarrow \mid$
approximately here, type $\mathbf{5 0 0}$ and press enter.

The Inch-Units is filled in automatically because it has been set previously to Inches, 3 decimal places.

Continue adding the horizontal dimensions as shown here.

NOTE:

The color of the sketch lines changes from Blue to Black, to indicate that they have been constrained with dimensions.

8. Adding the Vertical dimensions:

With the SmartDimension tool still selected, click line 1 and line 2 , then place the dimension approximately as shown; change the value to .500 in .

Continue adding other dimensions until the entire sketch turns into the Black color.

The Status of a Sketch:

The current status of a sketch is displayed in the lower right corner of the screen.

Fully Defined	$=$	Black	Fully Defined
Under Defined	$=$	Blue	Under Defined
Over Defined	$=$	Red	Over Defined

9. Hiding the Sketch Relation Symbols:

The Sketch Relation Symbols indicate which geometric relation a sketch entity has, but they get quite busy as shown.

To hide or show the Sketch Relation Symbols, go to the View, Hide/Show menus and click off the Sketch Relations option.

Sketch Relation Symbols at a Glance

| Horizontal relation | Vertical relation |
| :--- | :--- | :--- |
| E Equal relation | Coincident relation |
| Tangent relation | Collinear relation |

10. Extruding the Base:

The Extrude Boss/Base command is used to define the characteristic of a 3D linear feature.

11. Sketching on a Planar Face:

Select the face as indicated below.
 to the Isometric view.

Select the Circle command from the Sketch Tools toolbar.

Planar Surfaces

A planar surface of the model can also be used as a Sketch Plane.

The Sketch will then be extruded normal to the selected surface.

Position the mouse cursor near the center of the selected face, click and drag outward to make a circle.

While sketching the circle, the system displays the radius value next to the mouse cursor.

Dimensions are added after the profile is created.

Select the Smart Dimension

command
\square
Snat diameter dimension to the circle. (Click on the edge of the circle and move the cursor outward at approximately 45 degrees, and click to place the dimension.)

To add the location dimensions, click the edge of the circle and the edge of the model, place the dimension, then correct the value.

Continue adding the location dimensions as shown to fully define the sketch.

Select the Line command
 and sketch the $\mathbf{3}$ lines as shown below. Snap to the hidden edge of the model when it highlights.

The color of the sketch should change to black at this point (Fully Defined).

12. Using the Trim Entities command:

Select the Trim Entities command from the Sketch toolbar (arrow).

Click the Trim to Closest option (arrow). When the pointer is hovered over a sketch entity, this trim command will highlight the entity prior to trimming them to the next intersection.

Trim Entities

Use this command to trim, extend or delete a sketch entity.

Hover the pointer over the lower portion of the circle; the portion that is going to be trimmed will highlight. Click the mouse button to trim.

The bottom portion of the circle is trimmed, leaving the sketch as one-continuous-closedprofile, suitable to extrude and make a 3D feature.

Next, we are going to look at some of the extrude options available in SOLIDWORKS.

13. Extruding a Boss:

Switch to the Features tab and click or select:
Insert / Boss-Base / Extrude.

Extrude Options...

Explore each extrude option to see the different results. Press Undo to go back to the original state after each one.

Drag the direction arrow on the preview graphics
to define the direction, and then enter a dimension for the extrude depth.

Blind Condition

B Using the Through All option:

When the Through All option is selected, the system automatically extrudes the sketch to the length of the part, normal to the sketch plane.

C. Using the Up To Next option:

With the Up To Next option selected, the system extrudes the sketch to the very next group of surface(s), and blends it to match the geometry of the surface(s).

D) Using the Up To Vertex option:

This option extrudes the sketch from its plane to a vertex, specified by the user, to define its depth.

Up To Next
Condition

Up To Vertex
Condition

This option extrudes the sketch from its plane to a single surface to define its depth.

(E) Using the Up To Surface option:

Up To Surface
Condition

(F) Using the Offset From Surface option:

This option extrudes the sketch from its plane to a selected face, and then offsets at a distance specified by the user.

Select a surface to offset from \&

Offset From Surface Condition

G Using the Up To Body option (optional):

This option extrudes the sketch from its sketch plane and blends into a selected body.

Up To Body
 Condition

The Up To Body option can also be used in assemblies or multi-body parts.
The Up To Body option works with either a solid body or a surface body.

It is also useful when making extrusions in an assembly to extend a sketch to an uneven surface.

(H) Using the Mid Plane option:

This option extrudes the sketch from its plane equally in both directions.
Enter the Total Depth dimension when using the Mid-Plane option.

Mid Plane
Condition

After you are done with exploring all the extrude options, change the Direction 1 to Through All.

Click OK.

The system extrudes the sketch to the outermost surface as the result of the Through All end condition.

SOLIDWORKS 2024 | Basic Tools | Basic Solid Modeling | Extrude Options

The overlapped material between the first and the second extruded features is removed automatically.

If the Merge Result checkbox is cleared, all interferences will be kept and the model became a multibody part.

Extrude summary:

* The Extrude Boss/Base command is used to add thickness to a sketch and to define the characteristic of a 3D feature.
* A sketch can be extruded in both directions at the same time, from its sketch plane.

[^1]
14. Adding the model fillets:

Fillet/Round creates a rounded internal or external face on the part. You can fillet all edges of a face, select groups
 of faces, edges, or edge loops.

The radius value stays in effect until you change it.
Therefore, you can select any number of edges or faces in the same operation.

Select the Constant Size Fillet button (arrow).
Either "drag-select" to highlight all edges of the model, or press the shortcut key Control+A (select all).

Enter . 125 in. for radius size.

Enable the Full Preview checkbox.

Click OK.

In the Training Files folder, in the Built Parts folder, you will also find copies of the parts, assemblies, and drawings that were created for cross referencing or reviewing purposes.

* Fillets and Rounds:

Using the same Fillet command, SOLIDWORKS "knows" whether to add material (Fillet) or remove material (Round) to the faces adjacent to the selected edge.

15. Saving your work:

Select File / Save As.

Change the file type to Part file (.sldprt).
Enter Extrude Options for the name of the file.
Click Save.

Questions for Review

1．To open a new sketch，first you must select a plane from the FeatureManager tree．
a．True
b．False
2．Geometric relations can be used only at the assembly level，not at the part level．
a．True
b．False
3．The current status of a sketch is displayed in the lower right area of the screen as Under defined，Fully defined，or Over defined．
a．True
b．False
4．Once a feature is extruded，its extruded direction cannot be changed．
a．True
b．False
5．A planar face can also be used as a sketch plane．
a．True
b．False
6．The Equal relation only works for Lines，not Circles or Arcs．
a．True
b．False
7．After a dimension is created，its value cannot be changed．
a．True
b．False
8．When the UP TO SURFACE option is selected，you must choose a surface as the end－ condition to extrude up to．
a．True
b．False
9．UP TO VERTEX is not a valid Extrude option．
a．True
b．False

Using the Search Commands:

The Search Commands lets you find and run commands from SOLIDWORKS Search or locate commands in the user interface.

These features make it easy to find and run any SOLIDWORKS command:

The results are filtered as you type and typically find the command you need within a few keystrokes.

When you run a command from the results list for a query, Search Commands remembers that command and places it at the top of the results list when you type the same query again.

Search shortcuts let you assign simple and familiar keystroke sequences to commands you use more regularly.

Click the drop-down arrow to see the search options (arrow).

1．Search Commands in Features Mode：

The example below shows how you might use Search Commands to find and run the Lasso Selection command in Feature Mode．

With the part still open，start typing the command Lasso Selection in Search Commands．As soon as you type the first few letters of the word Lasso，the results list displays only those commands that include the character sequence ＂lasso，＂and Lasso Selection appears near the top of the results list．

（回）回－回 8
Click Show Command Location；a red arrow indicates the command in the user interface（do not move the mouse while the system is searching）．

2. Search Commands in Sketch Mode:

The example below shows how you might use Search Commands to find and run the Dynamic Mirror command in Sketch_Mode.

Using the same part, open a new sketch on the side face of the model as noted.

Start typing the command Dynamic Mirror in Search Commands. As soon as you type the first few letters of the word Dynamic, the results list displays only those commands that include the character sequence "dyna," and Dynamic command appears near the top of the results list.

Click Show Command Location 60 ; a red arrow indicates the command in the user interface. (You will cancel the search operation if the mouse is moved during this time.)

(T) [0] 回 \mathbb{O}

Additionally, a Search Shortcut can be assigned to any command to help find it more quickly (see Customize Keyboard in the SOLIDWORKS Help for more info):

1. Click Tools / Customize, and select the Keyboard tab.
2. Navigate to the command to which you want to assign a search shortcut.
3. In the Search Shortcut column for the command, type the shortcut letter you want to use, and then click OK.

Save and close all documents.

Exercise 1: Extrude Boss \& Hole Wizard

NOTE: The exercise gives you the opportunity to apply what you have learned from the lesson. There will be enough instruction provided for you to create the model but some of the steps may require you to plan ahead of time on how you should constrain the geometry such as: use only geometric relations, or use only dimensions, or use both.

1. Select the Front plane and open a new sketch.

Sketch a Rectangle and add the dimensions and relations needed to fully define the sketch.

2. Change to the Features tab and click Extruded Boss Base.

Select Mid-plane for Direction 1.

Enter 3.00in for Depth.

Click OK.
3. Open a new sketch on the face in the back of the part.

Sketch the profile shown.

Add the dimensions and relations as indicated to fully define the sketch.

4. Change to the Features tab and press Extruded Boss Base.

For Direction 1, select the Blind option.

For Depth, enter 2.00in.
Click Reverse (arrow) to extrude towards the front.

Click OK.

5. Adding the Holes:

Click the Hole Wizard command on the Features tab.

Set/select the following:

\author{

* Hole Type: Hole
 * Standard: ANSI Inch
 * Type: All Drill Sizes
 * Size:
 1/4
 * End Condition: Through All
}

Click the Position tab (arrow).

Select the face as indicated to activate the preview graphics.

Place 4 holes and add the dimensions/relations as noted to fully define the sketch.

Click this face to activate the preview

Click OK to accept and exit the Hole Wizard command.

6. Adding Fillets:

Click the Fillet command on the Features tab.

The Constant Size (arrow) option should be selected by default.

For Radius size, enter . 125in.

For Items to Fillet, select the $\mathbf{4}$ vertical edges as indicated.

Enable the Full Preview if needed.

Click OK.
The fillets are added to the selected edges.

7. Saving your work:

Select File, Save As.
Enter Extrudes_Exe2 for the file name.

Click Save.
(Try out the option Round Corners).

Without Round Corners

Exercise 2: Extrude Boss \& Extrude Cut

NOTE: In an exercise, there will be less step-by-step instruction than those in the lessons which will give you a chance to apply what you have learned from the previous lesson and create the model on your own.

1. Dimensions are in inches, 3 decimal places.
2. Use Mid-Plane end condition for the Base feature.
3. The part is symmetrical about the Front plane.
4. Use the instructions on the following pages if needed.

SOLIDWORKS 2024 | Basic Tools | Basic Solid Modeling | Extrude Options

1. Starting with the base sketch:

Select the Front plane and open a new sketch.
Starting at the top left corner, using the line command, sketch the profile below.

Add the dimensions shown.
Add the Parallel relation to fully define the sketch.
Extrude Boss/Base with Mid Plane and 3.000" in depth.

8	比 䧄	¢	Q
(1) Boss-Extrude1			
$\checkmark \times 60$			
From			\wedge
	Sketch Plane		\checkmark
Direction 1			^
Mid Plane			
λ			
	3.000in		\dagger
D			*
	\square Draft outward		
Select	ted Contours		\checkmark

2. Adding the through holes:

Select the face as indicated and click the Normal-To button.

This command rotates the part normal to the screen.

The hotkey for this command is $\mathbf{C t r l}+\mathbf{8}$.

Open a new sketch and draw a centerline that starts from the origin point.
Sketch 2 circles on either side of the centerline.
Add the diameter and location dimensions shown. Push Escape when done.

Hold the Control key and select both circles and the centerline, then click the Symmetric relation on the properties tree.

Create an extruded cut using the ThroughAll end condition.

3. Adding the upper cut:

Select the upper face and click the Sketch button to open a new sketch.

Sketch a centerline that starts at the Origin.

Sketch a rectangle as shown.

Add the dimensions and relations as indicated.

Create an extruded cut using the Up-To-Vertex condition (up-to-surface also works).

Select the Vertex indicated.

Click OK.

4. Adding the lower cut:

Select the lower face of the part and open a new sketch.

Sketch a rectangle on this face.
Add a Collinear and an Equal relation to the lines and the edges as noted.

The line is Collinear and Equal with the edge on both sides

Extrude a cut using the Through All condition.

5. Adding fillets:

Select the Fillet command from the Features toolbar.
Enter .032in. for radius size.

Select the $\mathbf{4}$ vertical edges on the inside of the 2 cuts.
Keep all other options at their default settings.

Click OK.

6. Adding chamfers:

Click Chamfer under the Fillet drop-down.

Enter . $\mathbf{0 6 0}$ for depth.
Select the $\mathbf{4}$ circular edges of the 2 holes (both front and back).

13	県 伤	¢	θ
(1) Chamfer1			
$\checkmark \times$			
Chamfer Parameters \wedge			
$\text { (1.) } \begin{aligned} & \text { Face }<1> \\ & \text { Face }<2> \end{aligned}$			
Angle distanceDistance distanceVertex			
\square Flip direction			
	0.060 in		*
	45.00deg		*
	- Select throu Keep featur	faces	
	\square Tangent pro	gation	
	Ofull preview		
	Opartial previe		
	Ono preview		

Click OK.

7. Saving your work:

Click File / Save As.

Enter Extrudes_Exe2 for the file name.
Select a location to save the file.

Click Save.

[^0]: * Geometric relations are one of the most powerful features in SOLIDWORKS. They are used in the sketch level to control the behaviors of the sketch entities when they are moved or rotated and to keep the associations between one another.

[^1]: * A sketch can also be extruded as a solid or a thin feature.

