Autodesk⁸ Revit 2026 Structure Fundamentals

Visit the following websites to learn more about this book:

SDC

Chapter

7

Foundations

Structural foundations are created using concrete walls, columns, and footings. Revit[®] includes standard tools for creating walls and columns in several different materials, as well as specific tools for adding footings.

Learning Objectives

- Create walls that can be used in foundations.
- Add bearing and retaining wall footings under the walls.
- Create column types to be used as piers and pilasters.
- Place isolated footings under the columns.

7.1 Modeling Walls

Walls in Revit are more than just two lines on a plan. They are full 3D elements that store detailed information, including height, thickness, and materials. This means they are useful in 2D and 3D views. Structural walls (as shown in Figure 7–1) are bearing walls that can act as exterior, foundation, retaining, and shaft walls.

- Walls also impact material takeoff schedules.
- Walls are a system family that is predefined in the Revit template file and cannot be loaded in from an external location or saved out to a external location.
- Walls can be customized to suit your company needs, if necessary.
- To ensure that your walls are oriented correctly, it is best practice to draw your walls in a clockwise manner.

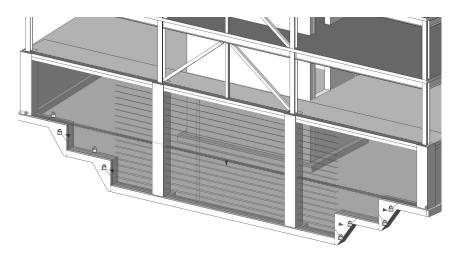


Figure 7-1

In a building, different types of walls serve different purposes. Structural walls are load-bearing, carrying the weight of the roof and floors and helping to support the building. Non-load-bearing walls do not support any weight and are mainly used to divide spaces inside. A face wall is the outer wall of a building, which closes off the space and may also be decorative. A finish wall is the layer added to the surface of a wall, like paint, tiles, wallpaper, or paneling, best used for presentations.

In Revit, there are three broad categories of walls:

- Basic walls: Compound walls that contain one or more layers (e.g., blocks, air space, bricks, etc.).
- Curtain walls: Walls that are divided horizontally and vertically into a grid system.
- Stacked walls: Consist of two or more basic walls stacked vertically, such as a brick wall
 over a concrete wall.

Wall Cross-Section

The *Cross-Section* for the basic wall category can be modified to be **Vertical**, **Slanted**, or **Tapered**, as shown in Figure 7–2.

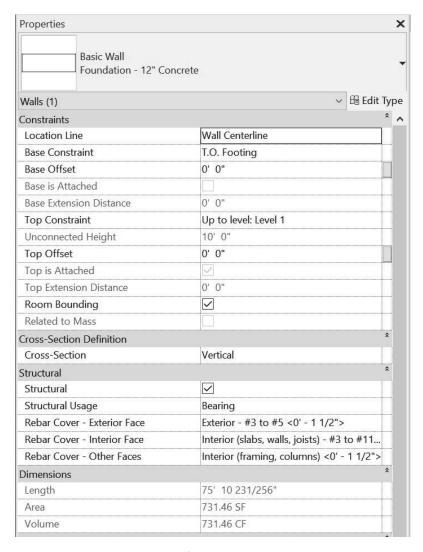


Figure 7-2

Vertical Wall

All walls are drawn by default as a vertical wall and are at a 0° vertical when comparing it to a slanted wall type.

Note: If you change a wall's cross-section to **Tapered** and adjust the settings for the tapered wall, then you will see only the Tapered wall types displayed in the Type Selector. If you need to draw a vertical or slanted wall after the tapered wall is drawn, you will need to set the cross-section back to **Vertical** or **Slanted** so that you can see all the wall types in the Type Selector.

Slanted Wall

You can draw a slanted wall type and specify the **Angle From Vertical** degree value in Properties. The slant degree needs to be within -90° to 90°. You can also change a vertically drawn wall to a slanted wall type. If there are any doors, door openings or window added to the wall, you will need to select those objects and, in Properties, specify their *Orientation*. The direction to which the wall has been drawn (right to left or left to right) will determine the direction the angle will go. Figure 7–3 shows that when drawing from left to right the wall slant will go in the negative direction, and drawing from right to left the slant wall goes in the positive direction.

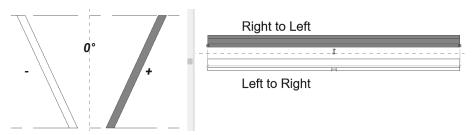


Figure 7-3

- Slanted walls can be modified in a plan, 3D, section, and perspective views.
- You can create a slanted wall with curved, circle, arc, polygon, or elliptical paths.
- If the angle is not going in the correct direction, + or -, you can add a (negative) symbol in front of the degree value in Properties.

Tapered Wall

You can create a tapered wall from any wall type except walls with sweeps and reveals. You must first edit the structure of the wall to set the variable thickness for the available wall layers. If not, you are prompted to set this before drawing the wall, as shown in Figure 7–4.

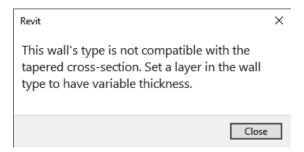


Figure 7-4

• To set the default angles of the tapered wall, you can set the *Default Exterior* and *Interior Angle* in the *Type Properties* dialog box.

• If you have multiple instances of the same tapered wall type, you can select a tapered wall, and in Properties, override the angles by selecting the **Override Type Properties** option and also setting the *Exterior Angle* and *Interior Angle*, as shown in Figure 7–5.

Cross-Section	Tapered
Override Type Properties	
Exterior Angle	5.00°
Interior Angle	0.00°

Figure 7-5

- Curtain walls and stacked wall types cannot be tapered.
- If doors, door openings, or windows are placed in a tapered wall, you can specify the orientation of the door and wall.

Wall Display per View

You can alter the way a wall is displayed in the active view by setting the *Detail Level*, as shown in Figure 7–6. You can also override the visibility settings of all walls in a view by opening the *Visibility/Graphic Overrides* dialog box and modifying the **Wall** category. To change the way selected walls display in the active view, you would override the setting for graphics in view by element. To display the hatching in all walls in the active view where a wall is being cut through, in the View Control Bar, set the *Detail Level* to **Medium** or **Fine**, as shown in Figure 7–6.

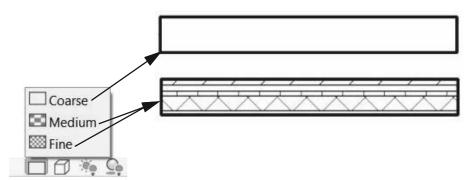


Figure 7-6

• To access the *Visibility/Graphic Overrides* dialog box to change all walls in a view, go to the *View* tab>*Graphics* panel and click (Visibility/Graphics), or type **VG** or **VV**. You can uncheck **Non-Core Layers** (as shown in Figure 7–7) to only view the core layer in the view. This overrides all walls in the view.

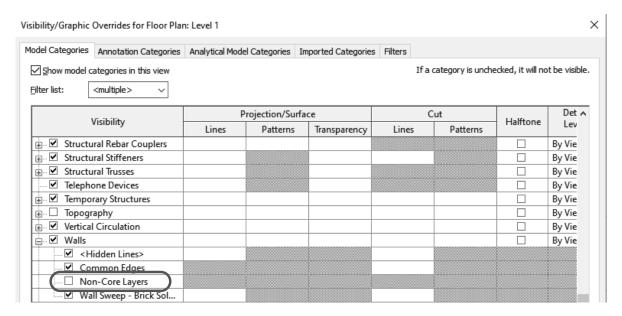


Figure 7-7

• To modify a single or a select few walls in the view, select the walls, right-click, and select **Override Graphics in View>By Element**, as shown in Figure 7–8.

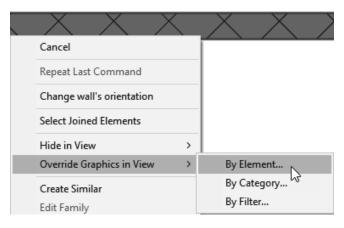


Figure 7-8

How To: Model a Wall

- In the Structure tab>Structure panel, click (Wall: Structural), or type WA.
 - Architectural walls (which are created with the Wall: Architectural command) are
 typically non-bearing walls, such as curtain walls and partitions. They do not display
 when the view Discipline is set to Structural.

2. In the Type Selector, select a wall type, as shown in Figure 7–9. You can use the search box to guickly find specific types of walls.

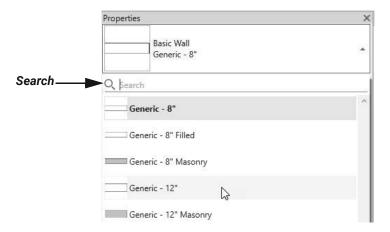


Figure 7-9

- 3. In Properties, set the *Cross-Section* to **Vertical**, **Slanted**, or **Tapered**, depending on the wall you need to create, as shown in Figure 7–10. Specify the properties and type properties as needed. If this is not set at the beginning of drawing a wall, the last cross-section used will be the default.
 - If you set the *Cross-Section* to **Slanted**, you are able to set the *Angle From Vertical* degree, as shown in Figure 7–10.

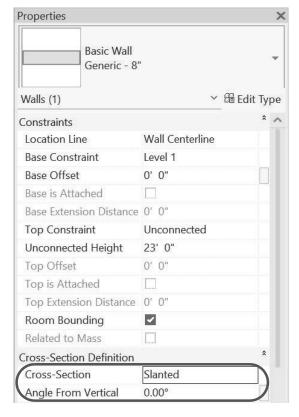


Figure 7-10

- If you set the *Cross-Section* to **Tapered**, you will get a warning about the wall type. You must first edit the structure of the wall before setting the *Cross-Section* to **Tapered**.
 - **a.** With the wall type selected, click **Edit Type** in Properties.
 - **b.** Click **Edit...** next to *Structure*.
 - **c.** In the *Edit Assembly* dialog box, select the option in the *Variable* column (as shown in Figure 7–11) for the layer that you want tapered.

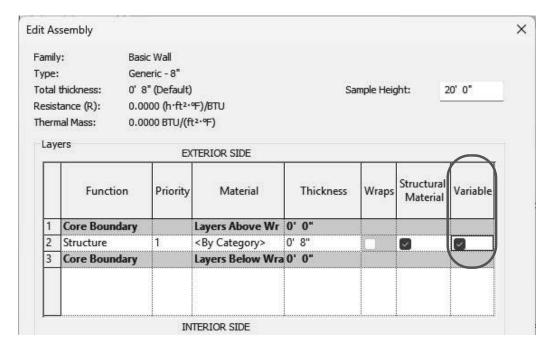


Figure 7-11

d. Click OK.

e. In the *Type Properties* dialog box, you will now have the ability to set the *Cross Section Properties*, as shown in Figure 7–12.

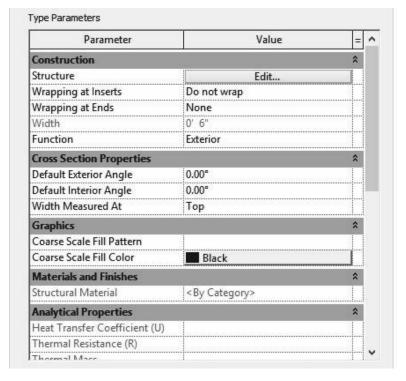


Figure 7-12

4. In the Options Bar (shown in Figure 7–13), specify the following information about the wall before you start modeling:



Figure 7-13

- Height: Set the height of a wall to either Unconnected (with a specified height) or to a level.
- Location Line: Set the justification of the wall using the options shown above in Figure 7–13.
- Chain: Enables you to model multiple connected walls.
- Offset: Enables you to enter the distance at which a new wall is created from an existing element.
- Radius: Adds a curve of a specified radius to connected walls as you model.
- Join Status: Allow or Disallow automatic wall joins.

5. In the *Modify | Place Wall* tab>*Draw* panel (shown in Figure 7–14), select one of the options to create the wall.

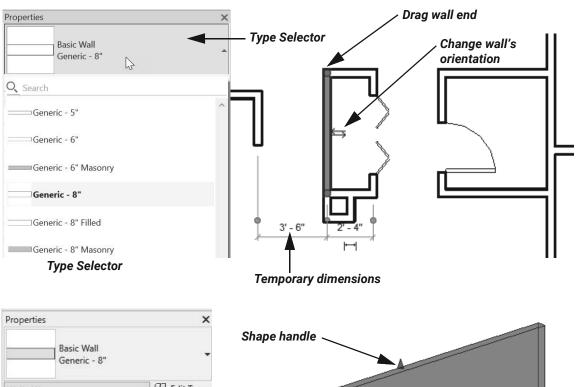


Figure 7-14

- Use alignment lines, temporary dimensions, and snaps to place the walls.
- As you are sketching, you can press <Spacebar> to flip the orientation of compound walls.
- When using the *Chain* option, press <Esc> once to finish the string of walls and remain in the **Wall** command or press <Esc> twice to get out of the Wall command completely. Hint: <Esc> works similarly on other commands.

7.2 Modifying Walls

There are several methods of modifying walls. You can change the type of wall using the Type Selector, modify the Properties, use controls and shape handles to modify the length and wall orientation, and use temporary and permanent dimensions to change the location or length of a wall in 2D and 3D views, as shown in Figure 7–15. Additional tools enable you to modify wall joins, edit the profile of a wall, and add wall openings.

√ ☐ Edit Type Walls (1) Constraints Location Line Wall Centerline Base Constraint Level 1 Base Offset 0' 0" Base is Attached Base Extension Dist... 0' 0" Top Constraint Unconnected Unconnected Height 20' 0" Top Offset 0' 0' Top is Attached Top Extension Dista... 0' 0" Room Bounding Related to Mass

Properties

Drag wall end

Figure 7-15

Modifying Slanted and Tapered Walls

Modifying a slanted or tapered wall is similar to modifying a vertical wall type with the exception of modifying the angle.

 When modifying a slanted wall type, you have the ability to modify the Drag Wall Slant grip or modify the temporary dimension in a 3D, section, elevation, or isometric view, as shown in Figure 7–16.

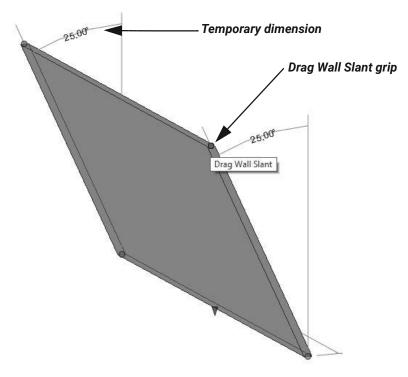


Figure 7-16

 When modifying a tapered wall, you have the ability to modify the Drag Wall Exterior Face Slant and Drag Wall Interior Face Slant grips or modify the temporary dimension in a 3D, section, elevation, or isometric view, as shown in Figure 7–17.

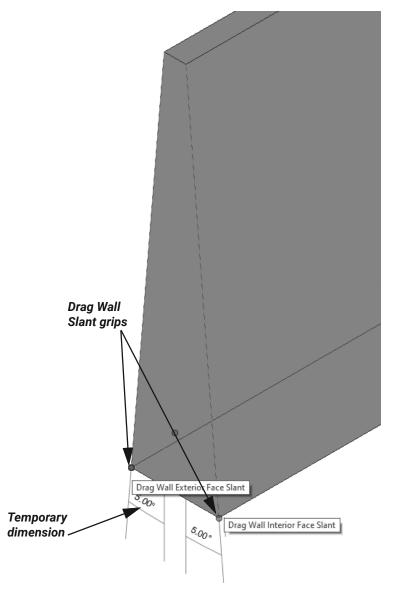


Figure 7-17

• You can set the wall's structural properties as **Non-bearing**, **Bearing**, **Shear**, or **Structural combined**, as shown in Figure 7–18.

Figure 7-18

Wall Joins

The software automatically joins walls with common materials when they come together at an intersection, as shown on the left in Figure 7–19. However, there are times when you do not want the walls to clean up, such as when one fire-rated wall butts into another, or when a wall touches a column surround, as shown on the right in Figure 7–19.

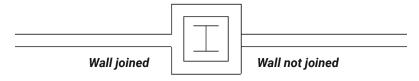


Figure 7-19

• While you are creating walls, change the *Join Status* to **Disallow** in the Options Bar, as shown in Figure 7–20.

Figure 7-20

• If a wall is already placed, select the wall and right-click on the Drag Wall End control at the end of the wall and select **Disallow Join**, as shown on the left in Figure 7–21. Once the end is not joined, you can drag it to the appropriate location, as shown on the right in Figure 7–21.

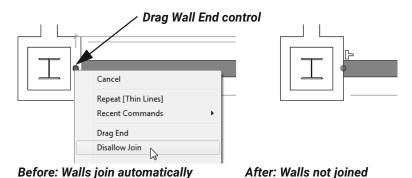


Figure 7-21

• To rejoin the walls, right-click on the end control and select **Allow Join**. Manually drag the wall back to where you want it to touch the target wall.

If you select a wall, you can change the **Allow Join/Disallow Join** option by clicking on the icon that displays next to the wall's end, as shown in Figure 7–22. Click (Allow Join) to join the walls together or click (Disallow Join) to unjoin them.



Figure 7-22

Editing Wall Joins

Use **Wall Joins** to modify the configuration of the intersections, as shown in Figure 7–23. Do not use this command if you have complex wall joins; instead, modify the length of the wall in relation to the adjoining walls.

How To: Modify the Configuration of a Wall Join

- 1. In the *Modify* tab>*Geometry* panel, click 嶫 (Wall Joins).
- 2. Click on the wall join that you want to edit. There is a square box around the join. Hold <Ctrl> to select multiple joins.
- 3. In the *Modify | Wall Joins* tab>*Configuration* panel, select the required configuration and display options, as shown in Figure 7–24.

Figure 7-24

• Select from three configurations: \triangle (Butt), \triangle (Miter), or \triangle (Square Off), as shown in Figure 7–25.

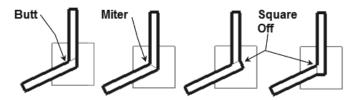


Figure 7-25

 Click (Previous) and (Next) to toggle the butt or squared-off corner configurations through the various intersection options.

How To: Modify Display Options of Wall Joins

- 1. In the Modify tab>Geometry panel, click 峰 (Wall Joins).
- 2. Click on the wall join that you want to edit. To modify multiple joins at the same time, draw a window around several wall intersections (as shown in Figure 7–26), or hold <Ctrl> and pick additional intersections. A square box displays around each join.

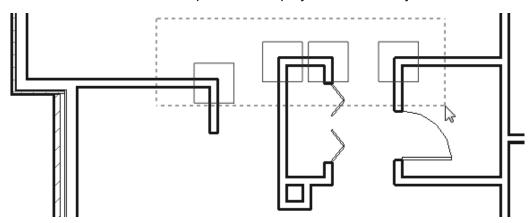


Figure 7-26

3. In the *Modify | Wall Joins* tab>*Display* panel, expand ☐ (Display). This controls whether or not wall joins are displayed. The options are **Use View Setting** (set up in View Properties), **Clean Join**, and **Don't Clean Join**, as shown in Figure 7–27.

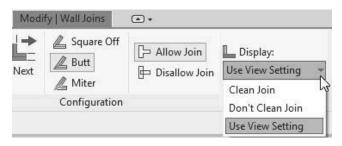


Figure 7-27

4. With any *Display* options selected, you can click (Allow Join) or (Disallow Join) in the *Modify | Wall Joins* tab>*Display* panel (shown previously in Figure 7−27). When you select one of these two options, the contextual tab options gray out. To bring back your options, click the wall's corner again.

Editing Wall Profiles

Walls often follow the contours of a site or an angle, such as following a line of stairs, as shown in Figure 7–28. If needed, you can edit the profile of a wall.

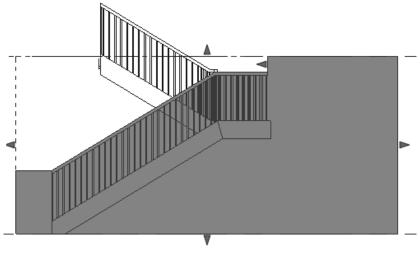


Figure 7-28

How To: Edit the Profile of a Wall

- 1. Open an elevation or section view in which you can see the face of the wall that you want to edit.
- 2. Select the wall (by highlighting the wall boundary). You can also double-click on a wall to edit the profile.
 - · You cannot edit the profile of a tapered wall.
- 3. In the *Modify | Walls* tab>*Model* panel, click [≤] (Edit Profile). The wall is outlined in magenta, indicating the profile of the wall.

4. In the *Modify | Walls>Edit Profile* tab>*Draw* panel, use the tools to modify the profile sketch of the wall, as shown on the top in Figure 7–29.

Note: The sketch must form a continuous loop. Verify that the lines are clean without any gaps or overlaps. Use any of the tools in the Modify panel to clean up the sketch.

5. Once the profile is complete, click (Finish Edit Mode). The wall now follows the new profile, as shown on the bottom in Figure 7-29.

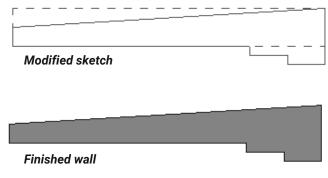
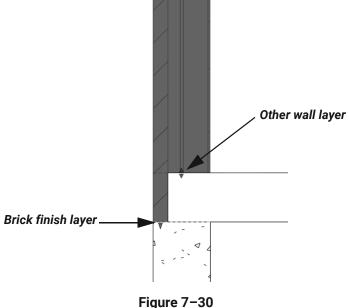



Figure 7-29

After you adjust the sketch, you can add isolated footings to create the appropriate shape.

Editing Wall Layer Elevations

Individual layers of walls can have their height modified to better control elevations of finishes, such as brick veneer extending to a foundation (as shown in Figure 7-30), while the other layers rest on the floor slab.

How To: Edit Wall Layers

- 1. In any view, select a wall. In Properties, click Edit Type.
- In the Type Properties dialog box, click the Edit... button next to Structure in the Construction section.
- 3. In the *Edit Assembly* dialog box, click the **<<Pre>review** button to expand the preview window, as shown in Figure 7–31.

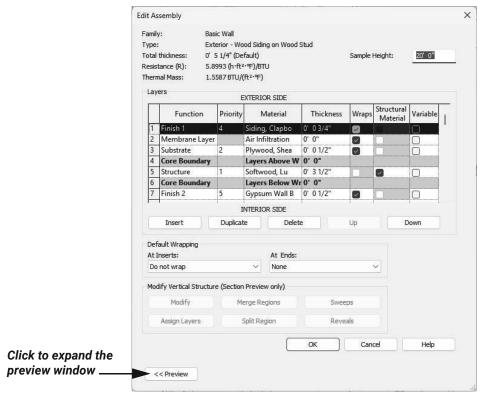


Figure 7-31

4. Set the *View* to **Section: Modify type attributes**, as shown in Figure 7–32.

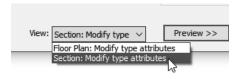


Figure 7-32

5. In the preview window, zoom in to the bottom edge of the wall, as shown in Figure 7–33, and in the *Modify Vertical Structure* area, click **Modify**. The brick layer will turn from blue to red.

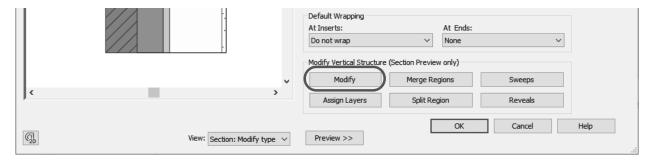


Figure 7-33

Note: If doing this to multiple layers in a wall, all the layers must be adjacent to each other.

6. Click on the outer boundary at the bottom of the brick layer, as shown on the right in Figure 7–34. A lock will display, as shown on the left in Figure 7–34.

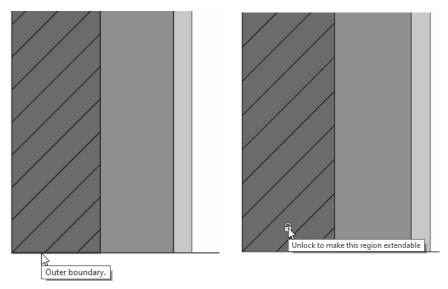


Figure 7-34

7. Click the lock to make the brick layer or region extendable.

Note: Make sure the lock displayed shows as unlocked, as shown in Figure 7–35, before you proceed.

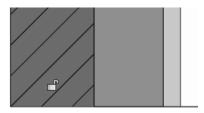


Figure 7-35

- 8. Click OK twice.
- 9. In a section view, you can select the wall and use the grips to extend the brick layer, as shown in Figure 7–36.

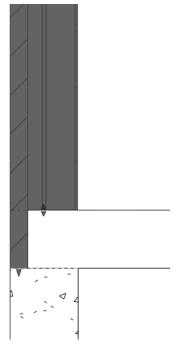


Figure 7-36

• An alternative option for adjusting the extension is in the instance properties of the wall. Set the Base Extension Distance to adjust unlocked layers, as shown in Figure 7–37.

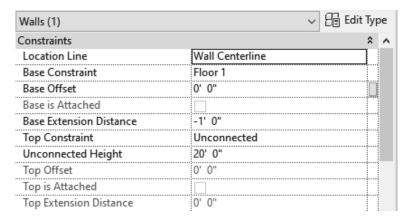


Figure 7-37

• If the layers were unlocked at the top instead of the bottom, you would be able to adjust the top extension distance in Properties or by dragging grips in a section view.

Wall Openings

You can add openings in walls that are not windows or doors by using the **Wall Opening** tool. This creates rectangular openings for both straight and curved walls, as shown in Figure 7–38.

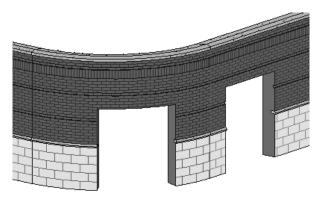


Figure 7-38

How To: Add Wall Openings

- Open a plan, elevation, section, or 3D view.
- 2. In the Architecture tab>Openings panel, click (Wall Opening).
- 3. Select the wall.
- **4.** Pick two points on the diagonal to determine the opening size, if in elevation, section, or 3D view. If you are in plan, you need to pick the start and stop points for the wall opening.
- You can use temporary dimensions to size the opening while in the command and both temporary dimensions and shape handles to modify the opening when it is selected, as shown in Figure 7–39.

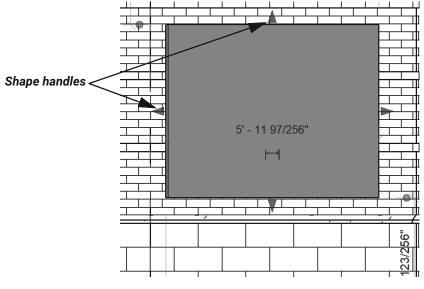


Figure 7-39

Hint: Matching Properties

You can select an existing wall and use it to assign the wall type and instance properties to other walls by using the Match Type command. This command also works with all elements that have types.

- 1. In the *Modify* tab>*Clipboard* panel, click (Match Type), or type **MA**. The cursor changes to an arrow with a clean paintbrush.
- 2. Select the source element that you want all of the others to match. The paintbrush changes to look as if it has been dipped in black paint, as shown in Figure 7-40.

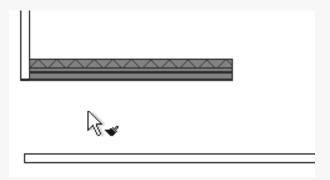


Figure 7-40

- 3. To select more than one element, in the Modify | Match Type tab>Multiple panel, click (Select Multiple). You can then use windows, crossings, <Ctrl>, and <Shift> to create a selection set of elements to change.
- 4. Click (Finish) to apply the type to the selection.
- Click in an empty space in the view to empty the brush so that you can repeat the command with a different element.
- Elements to be matched must be of the same type (e.g., all walls, all doors, etc.).
- 5. Click (Modify) to end the command.

7.3 Adding Wall Footings

Footings are appended to the bottom of a wall, which means that any change to the base of the host wall influences the footing. This occurs for lateral movement and horizontal movement. For the example shown in Figure 7–41, when the wall profile changes based on a sloped site (as shown on the left), the footing breaks and follows the modified profile (as shown on the right). This is accomplished by editing the profile of the foundation wall.

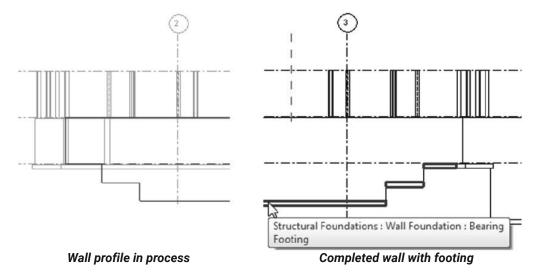


Figure 7-41

 Once a footing is in place, you can add reinforcement in a section view, as shown in Figure 7–42. With the advantages of having a true foundation in place, you can accurately tag and schedule the footings.

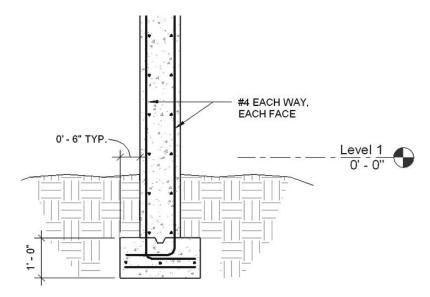


Figure 7-42

You can edit a footing's profile the same way you would edit a wall profile.

- You can apply two types of continuous footing systems, as shown in Figure 7–43. You must have walls in your model to add a footing system.
 - Retaining footings: A footing with one side offset to accommodate additional lateral loads and reinforcement.
 - Bearing footings: A footing with an equal distance on either side of the bearing wall.

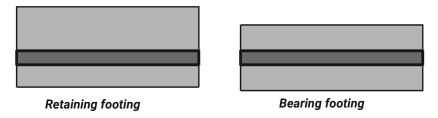


Figure 7-43

How To: Place a Bearing or Retaining Footing

- 1. Create or use existing walls in a 3D, section, or elevation view.
 - A wall must be in place to add a bearing or retaining footing.
- 2. Open a foundation plan and set it up so that the walls are displayed and you can select them.
- 3. In the Structure tab>Foundation panel, click (Structural Foundation: Wall) to start the Structural Foundations: Wall command, or type FT.
- **4.** In the Type Selector, select a type, as shown in Figure 7–44.

Figure 7-44

5. Select a wall. The footing is placed beneath the wall, as shown in Figure 7-45.

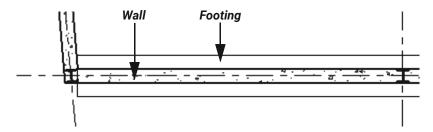


Figure 7-45

- To select multiple walls, hover over one wall and then press <Tab> to select all connected walls. Alternatively, in the Modify | Place Wall Foundation tab>Multiple panel, click (Select Multiple). Select the walls using any selection method and click
 (Finish) to place the footings.
- You can flip retaining footings using the Flip control, as shown in Figure 7–46.

Figure 7-46

Hint: Materials

When you are creating some types, such a wall footings, one option is to set the *Structural Material*. In the *Type Properties* dialog box, in the *Materials and Finishes* section, click in the

Value column and then click (Browse), as shown in Figure 7-47.

Figure 7-47

In the Material Browser (shown in Figure 7–48), specify the material you want to use and click \mathbf{OK} .

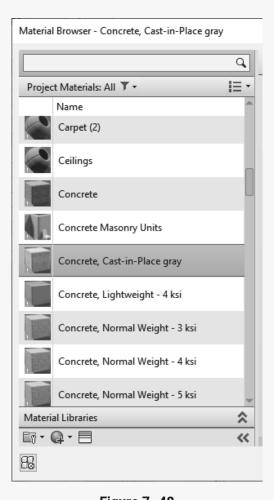


Figure 7-48

Practice 7a Model Walls and Wall Footings

Practice Objectives

- Place structural walls.
- Create and apply wall footings.

In this practice, you will model the perimeter foundation walls as well as the elevator and stairwell walls, as shown in Figure 7–49. (Grids have been turned off in the image for clarity.)

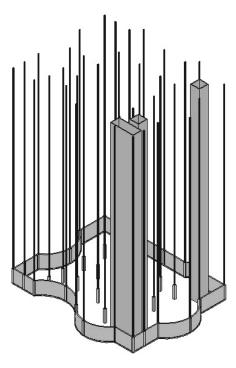


Figure 7-49

Task 1: Add foundation walls.

- 1. Open Structural-Walls.rvt from the practice files folder. The default (3D) view displays.
- 2. Open the **Structural Plan: 00 GROUND FLOOR** view. (The green lines are the outline of the building.)
- 3. In the Structure tab>Structure panel, click (Wall: Structural).
- 4. In the Type Selector, select Basic Wall: Exterior 8" Concrete.
- 5. In the Options Bar, set the *Depth* to **00 T.O. FOOTING** and ensure that the *Location Line* is set to **Wall Centerline** and that **Chain** is checked.

- 6. In the Modify | Place Structural Wall tab>Draw panel, click (Line).
- 7. Select the start point by snapping to the **G1** grid intersection, as shown in Figure 7–50.

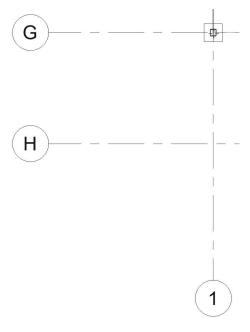


Figure 7-50

- 8. Draw the wall up to the E1 grid intersection.
- 9. In the *Draw* panel, click (Start-End-Radius Arc). Select the second point at the **C1** grid intersection and then the third point at the **D2** grid intersection at the midpoint of the column to specify the radius of the arc, as shown in Figure 7–51.

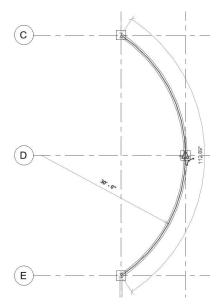


Figure 7-51

- 10. Click (Line) again and select the **B1** grid intersection.
- **11.** Following the green outline, continue drawing walls all the way around the perimeter, as shown in Figure 7–52.

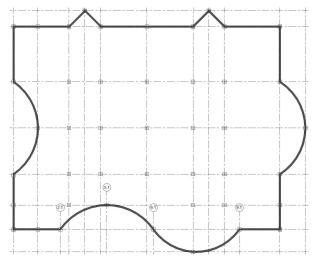


Figure 7-52

- 12. Click (Modify).
- 13. Save the project.

Task 2: Apply foundation wall footings.

- 1. Open the Structural Plans: 000 FOUNDATION PLAN view.
- 2. In the Structure tab>Foundation panel, click (Structural Foundation: Wall), or type FT.
- 3. In the Type Selector, select the Wall Foundation: Bearing Footing 24" x 12".
- **4.** Hover the cursor over one of the existing walls and press <Tab> to highlight the entire wall system. Click to select the walls. The footing is placed under the entire structure.
 - If you do not see the new wall foundation elements, you might be in the wrong view where they are not visible. Open the **Structural Plans: 000 FOUNDATION PLAN** view.
- 5. Click (Modify).

6. In the Quick Access Toolbar, click (Default 3D View) to activate the **(3D)** view. Verify that the footing is placed correctly, as shown in part in Figure 7–53. Change the visual style as needed.

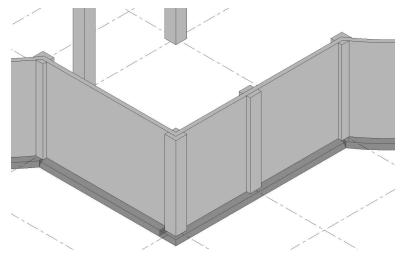


Figure 7-53

7. Save the project.

Task 3: Create walls for the elevators and the stairwell.

In this task, you will draw walls for two elevator shafts and a stairwell using reference lines to lay out their positions within the building.

- 1. Open the Structural Plan: 00 T.O. FOOTING view.
- 2. Zoom in to the **C9** and **B10** grid intersections in the upper-right corner.
- 3. In the Structure tab>Work Plane panel, click 4 (Reference Plane).
- 4. In the Modify | Place Reference Plane tab>Draw panel, click 🍊 (Pick Line).
- 5. In the Options Bar, set the Offset to 9'-2 1/4".

6. Hover your cursor over the foundation wall (not the bearing footing) along grid line **B**. When the preview line is on the inside of the wall, click to place the reference plane. Repeat this for the wall along grid line **10**, as shown in Figure 7–54. (The dimensions in the image are for reference only.)

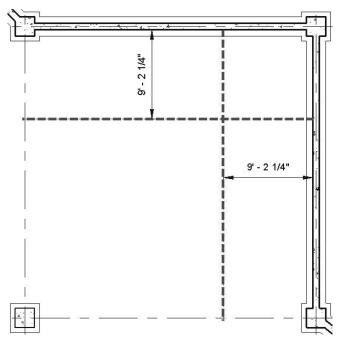
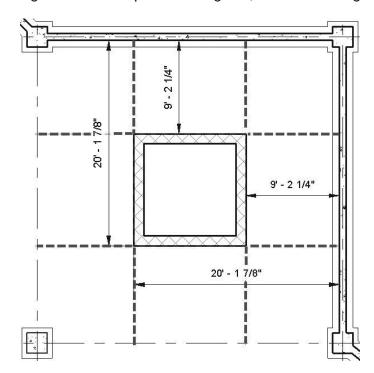



Figure 7-54

- 7. Repeat the process, but this time change the Offset in the Options Bar to 20'-1 7/8".
- 8. Click (Modify).
- 9. In the Structure tab>Structure panel, click (Wall: Structural).
- 10. In the Type Selector, select Basic Wall: Generic 12" Masonry.
- **11.** In the Options Bar, change *Depth* to **Height** and set it to **TOS-14 ROOF**, then set the *Location Line* to **Finish Face: Exterior**.
- 12. In the Modify | Place Structural Wall tab>Draw panel, click (Rectangle).

13. Draw the walls using the reference planes as a guide, as shown in Figure 7–55.

Figure 7-55

- 14. Click (Modify).
- 15. Open the (3D) view to see the walls.
- **16.** Return to the **00 T.O. FOOTING** view, then select the reference planes and press <Delete>.

- 17. Zoom in to the E9 and G10 grid intersections.
- **18.** Start the **Reference Plane** command and use the following offsets to draw reference planes from the foundation walls shown in Figure 7–56:
 - 15'-10 3/4" from the foundation wall on grid line G
 - 26'-10 3/8" from the foundation wall on grid line G
 - 9'-2 1/4" from the foundation wall on grid line 10
 - 20'-1 7/8" from the foundation wall on grid line 10
- **19.** Draw the elevator walls using the reference planes as a guide with the same settings used previously.
- 20. Delete the reference planes.

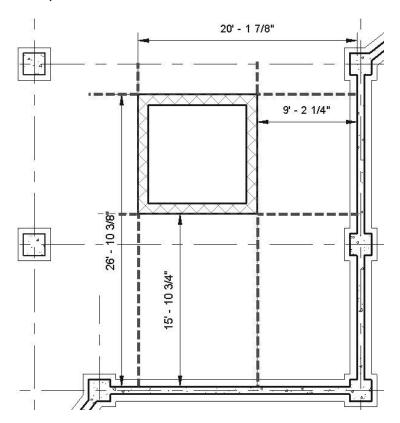


Figure 7-56

- 21. Click (Modify).
- **22.** Select a bearing footing along the exterior wall in the view. In the View Control Bar, expand (Temporary Hide/Isolate) and select **Hide Category**.
- 23. Select grid line 9.1 and in the View Control Bar, expand 66 (Temporary Hide/Isolate) and select Hide Element.

- **24.** Draw reference planes with the following offsets, as shown in Figure 7–57. Extend the reference lines so they intersect.
 - 0'-6 3/8" from the foundation wall on grid line G
 - 11'-10 5/8" from the foundation wall on grid line G
 - 0'-6 3/8" from the foundation wall on grid line 10
 - 27'-11 1/4" from the foundation wall on grid line 10

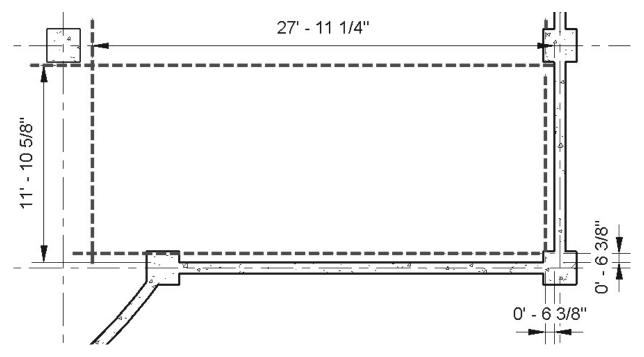


Figure 7-57

- 25. Draw walls using the reference planes, similar to the elevator shafts above.
- 26. Click (Modify).
- 27. Delete the reference planes. In the View Control Bar, expand 66 (Temporary Hide/Isolate) and select Reset Temporary Hide/Isolate.
- 28. If time permits, open the 000 FOUNDATION PLAN view, start the Structural Foundation: Wall command, and add Wall Foundation: Bearing Footing 24" x 12" to the stairwell walls.
- **29.** Save and close the project.

End of practice

7.4 Adding Isolated Footings

Footings for columns (shown in Figure 7–58) are placed using the **Structural Foundation: Isolated** command. When you select a column, the footing automatically attaches to the bottom of the column. This is true even when the bottom of the column is on a lower level than the view you are working in.

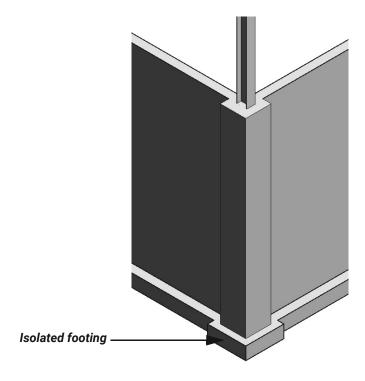


Figure 7-58

How To: Place an Isolated Footing

- 1. Open a plan view, such as a top of footing structural floor plan.
- 2. In the Structure tab>Foundation panel, click (Isolated) to start the Structural Foundation: Isolated command.
- 3. In the Type Selector, select a footing type.
- **4.** In Properties, set the *Level* and any other parameters.

- 5. In the view, click to place the individual footing, as shown in Figure 7-59.
 - If needed, press <Spacebar> to rotate the isolated footings after they are placed.

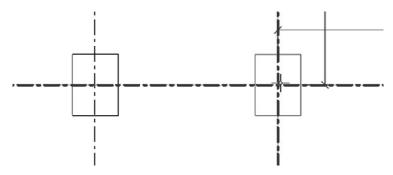


Figure 7-59

- To add more than one footing at a time, in the *Modify | Place Isolated Foundation* tab>

 Multiple panel, select (At Grids) or (At Columns) and select the grids or columns.
 - If needed, press <Spacebar> to rotate the isolated footings after they are placed.
- If the material of the wall footing and the material of the isolated footing are the same, they automatically join, as shown in Figure 7–60.

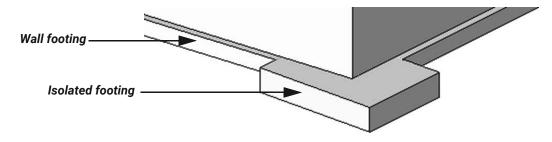


Figure 7-60

Hint: Foundation Element Properties

Some of the element properties are automatically generated from the location and size of the element in the model and are grayed out, for example *Host*, *Elevation at Top*, and *Elevation at Bottom* as shown in Figure 7–61. These can be used in tags and schedules.

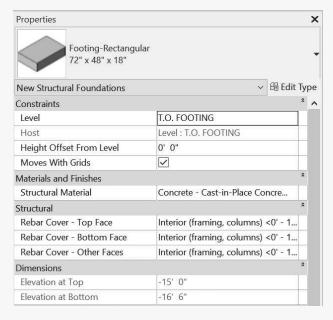


Figure 7-61

Working with Custom Families

Sometimes you need to work with a custom family that has parameters that you can manipulate to fit a specific situation. For example, to add the step footings shown in Figure 7–62, you need to insert an angled isolated footing and modify it to fit the exact size and location.

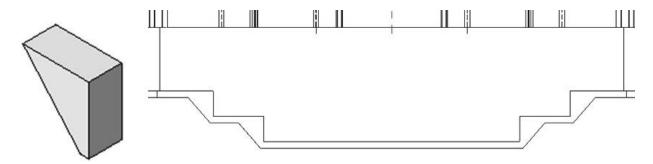


Figure 7-62

How To: Load, Insert, and Modify a Custom Footing

- 1. Open a plan view.
- 2. In the Structure tab>Foundation panel, click $\stackrel{1}{\longrightarrow}$ (Isolated).
- 3. In the Modify | Place Isolated Foundation tab>Mode panel, click 📑 (Load Family).
- **4.** In the *Load Family* dialog box, find the structural foundation family that you want to use and click **Open**.
- 5. Place the footing in the plan view. It might not be in the right place, but you can modify it in a section or elevation view.
- 6. Open an elevation or section view.
- 7. Move the footing to the correct location. As long as it is in line with another footing, it automatically cleans up, as shown in Figure 7–63.

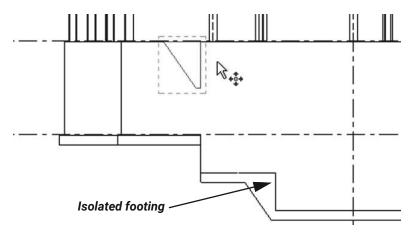


Figure 7-63

• Use (Align) to align the isolated footing with the footing already in the model. When it is aligned, select the lock, as shown in Figure 7–64. This ensures that if the elevation of the footing wall changes, the step footing will also adjust appropriately.

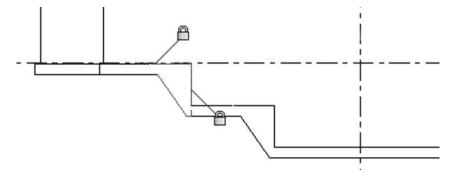


Figure 7-64

• Some custom families have sizing options in either Properties (per instance) or in the *Type Properties* dialog box (as shown in Figure 7–65) so that you can create additional types in various sizes as needed in the project.

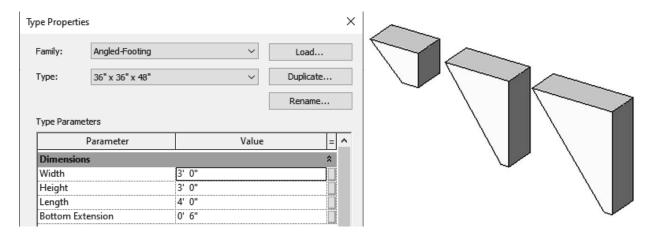


Figure 7-65

Practice 7b Add Isolated Footings

Practice Objectives

- Place isolated footings.
- Modify a wall profile and add stepped footings.

In this practice, you will place isolated footings, as shown in Figure 7–66. You will also create a series of stepped footings by modifying a wall profile and adding custom footings. (The stairwell and elevator walls are hidden in this practice's images for clarity.)

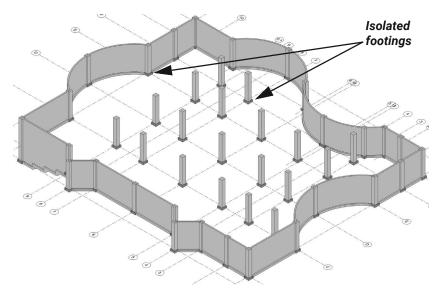


Figure 7-66

Task 1: Place isolated footings.

- 1. Open **Structural-Footings.rvt** from the practice files folder.
- 2. Open the Structural Plans: 00 T.O. FOOTING view.
- 3. In the Structure tab>Foundation panel, click $\stackrel{1}{\blacktriangleright}$ (Isolated).
- 4. In Properties, select one of the Footing Rectangular Foundations and click [6] (Edit Type).
- 5. In the Type Properties dialog box, click Duplicate... and name it 36"x36"x12".
- **6.** Set the values for the following parameters:
 - Foundation Thickness: 1'-0"
 - Width: 3'-0"Length: 3'-0"

7. Click OK.

8. Zoom in to the column at the **B1** grid intersection and place the isolated footing. The isolated footing and wall footing automatically join together, as shown in Figure 7–67.

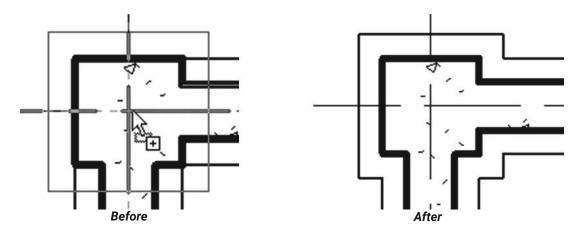


Figure 7-67

- 9. In the Modify | Place Isolated Foundation tab>Multiple panel, click (At Columns). Use a selection window to select all of the columns and click (Finish).
- 10. Reopen the default 3D view.
- 11. There should be an isolated footing under each pier and pilaster, as shown in Figure 7–68.

Note: The steel columns were hidden in this figure for clarity.

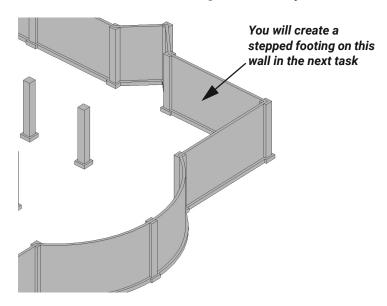


Figure 7-68

12. Save the project.

Task 2: Modify the profile of a wall and add stepped footings.

- 1. Open the Elevations (Building Elevation): North view.
- 2. Zoom in on the left end of the foundation wall and select the wall located between grid lines 10 and 9, as shown in Figure 7–69.

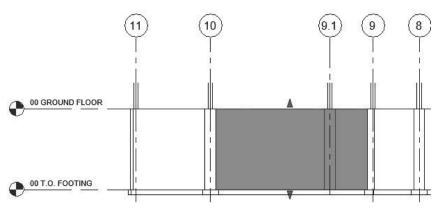


Figure 7-69

- 3. In the Modify | Walls tab>Mode panel, click (Edit Profile).
- **4.** Select any magenta line to select the wall. Click on the lock at the bottom of the wall to unlock it, as shown in Figure 7–70.

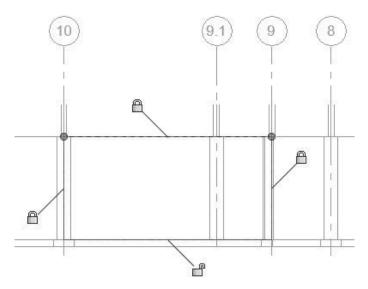
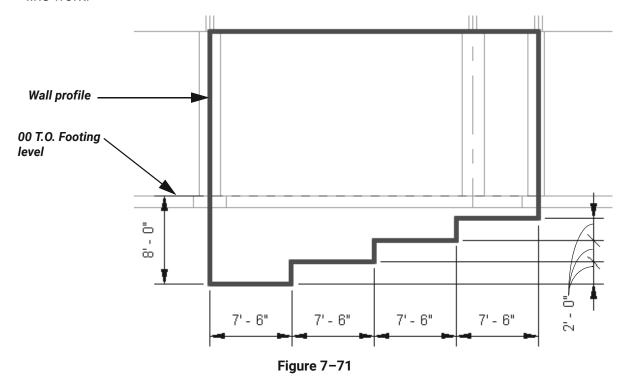



Figure 7-70

- **5.** Using the dimensions shown in Figure 7–71, modify the wall's profile. (The dimensions shown in the figure are for information only.)
- 6. Select the bottom magenta sketch line and drag it down to 23'-0" to add the additional 8'-0".
 - If a warning that cannot be ignored displays, click **Remove Constraints** to continue editing the wall's profile.
- 7. With the line still selected, click on the rightmost grip and drag the line to the left so it is only 7'-6" long.
- 8. In the *Modify | Walls>Edit Profile* tab>*Draw* panel, use the draw tools to sketch the rest of the stepped wall. In the *Modify* panel, use the **Trim/Extents to Corner** tool to clean up any line work.

9. Click ✓ (Finish Edit Mode). The wall profile is modified along with the footings, as shown in Figure 7–72.

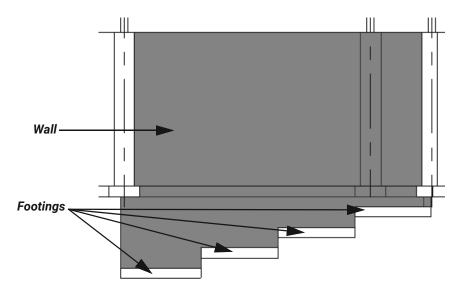


Figure 7-72

- **10.** Open the **Structural Plans: 00 T.O. FOOTING** view and zoom in on the upper-right corner between grid intersections **B9** and **B10** to see lines that show the steps of the wall's footing.
- **11.** In the *Structure* tab>*Model* panel, click (Place a Component), or type **CM**.
- 12. In the Type Selector, select Angled-Footing: 24" x 24" x 36".
- **13.** Place three footings along the wall, similar to those shown in Figure 7–73. Do not worry about the exact location; you will modify their position in the next steps.

Figure 7-73

14. Click (Modify).

15. Return to the **North** elevation view. The three angled footings are still on the level where they were placed, as shown in Figure 7–74 (your angled footings' positions may differ from those shown in the image).

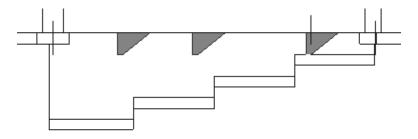


Figure 7-74

- **16.** In the *Modify* tab>*Modify* panel, click (Align), or type **AL**. Verify in the *Modify* | *Align* tab>*Align* panel that **Multiple Alignment** and **Lock** are unchecked.
- 17. Starting with the leftmost angled footing, first click the edge of the wall, then click the left edge of the angled footing, as shown on the left in Figure 7–75. Hint: You may need to use <Tab> to cycle through edges.
- **18.** Still in the **Align** command, click the bottom of the wall footing, then the top of the angled footing, as shown on the left in Figure 7–75.
- 19. The angled footing joins to the wall footing, as shown on the right in Figure 7–75.

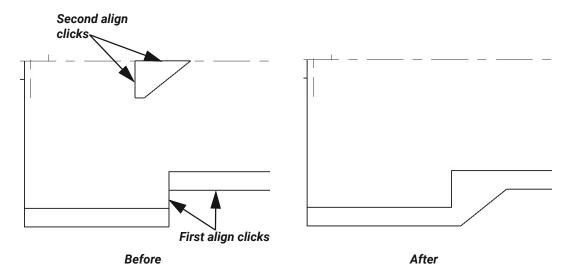


Figure 7-75

20. Continue aligning the rest of the angled footings to the wall footings.

21. View the new footings in 3D, as shown in Figure 7–76.

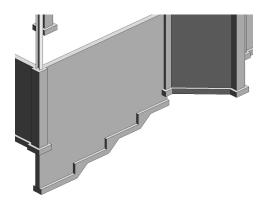


Figure 7-76

- **22.** (Optional) Modify the nearby wall, columns, and footings to match up with the new stepped footings.
- 23. Save and close the project.

End of practice

Chapter Review Questions

- 1. Which of the following are ways that you can sketch walls in a project? (Select all that apply.)
 - a. Line
 - b. Pick Lines
 - c. Insert Lines
 - d. Pick Faces
- 2. Which command do you use to insert a pier or a pilaster such as those shown in Figure 7–77?

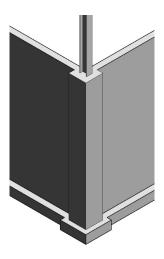


Figure 7-77

- a. Structural Foundation
- b. Isolated Foundation
- c. Structural Column
- d. Isolated Column
- 3. The P (Structural Foundation: Wall) command requires a host wall to already be in place.
 - a. True
 - b. False

4. Some walls are made from multiple layers of materials, such as brick, block, and drywall, as shown on the bottom in Figure 7-78. If the hatching for these materials is not displayed (as shown at the top in Figure 7-78), how do you change this?

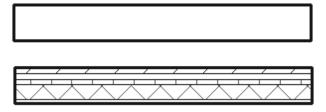


Figure 7-78

- a. Set the Visual Style to Realistic.
- b. Set the Detail Level to Medium.
- c. Set the View Scale to be higher.
- d. Set the Phase to New.
- **5.** Which command do you use to add a custom footing type under a wall such as the ones shown in Figure 7–79?

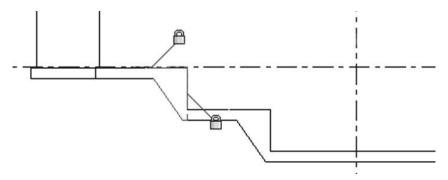


Figure 7-79

- a. Place a Component
- b. Structural Foundation: Isolated
- c. Structural Foundation: Wall
- d. Component: Structural Foundation

6. Which of the following are potential differences between the column surround wall and the associated walls, as shown in Figure 7–80? (Select all that apply.)

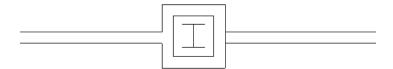


Figure 7-80

- a. The column surround and wall on the left are made with the same wall type, while the wall type on the right is a different wall type.
- b. The wall on the left has been joined together with the column surround, while the wall on the right was set to **Disallow Join**.
- c. The wall on the left was trimmed against the column surround.
- d. The wall on the right was extended to the column surround.
- 7. Which of the following would be true if you changed the top constraint of one wall from an unconnected height to a level?
 - a. All walls of that type would also change height.
 - b. Only that wall would change height.
 - c. You cannot change just one walls height.

Command Summary

Button	Command	Location
	Detail Level: Coarse	View Control Bar
***	Detail Level: Fine	View Control Bar
8	Detail Level: Medium	View Control Bar
	Edit Profile	Ribbon: (when a wall is selected) Modify Walls tab> Mode panel
	Isolated	Ribbon: Structure tab>Foundation panel
3	Match Type	 Ribbon: Modify tab>Clipboard panel Shortcut: MA
	Properties	 Ribbon: Modify tab>Properties panel Shortcut: PP
	Structural Foundation: Wall	Ribbon: Structure tab>Foundation panel
N/A	Type Selector	 Properties Ribbon: Modify tab (Optional) Quick Access Toolbar (Optional)
	Wall	• Ribbon: Architecture tab>Build panel
<u> </u>	Wall Opening	Ribbon: Architecture tab>Opening panel
	Wall: Structural	Ribbon: Structure tab>Structure panel