
PRO/MECHANICA WILDFIRE 2.0 ELEMENTS AND APPLICATIONS SERIES

PART I - IDEALIZATIONS

PRO/MECHANICA Mesh of a Sheet Metal Plate

Yves Gagnon, M.A.Sc.

Professor Mechanical Engineering Technology Okanagan University College

Schroff Development Corporation

www.schroff.com www.schroff-europe.com

Table of Contents

Preface	i
Acknowledgements	i
About the Author	ii
Files for this Manual	ii
Table of Contents	iii
Introduction	vii
Introduction to Mechanica Functionality	1
Key Assumptions in FEA	1
Geometry	1
Material Properties	1
Mesh	2
Boundary Conditions	2
Elements Used in FEA	3
Review of Element Behavior and Geometric Classifications	3
Common Modeling and Element Types	3
Planar Simulation Modeling	4
Plane Stress	4
Plane Strain	5
Axisymmetric	5
Three Dimensional Simulation	5
Beam Elements	6
Shell Elements	6
Axisymmetric Modeling	7
Planar Symmetry	7
Solid Modeling	7
Special Elements	8
Spring Elements	8
Mass Elements	9
Basic Elements for the FEA Beginner	9
Useful FEA Terminology	11
Shape Function	12
H vs P Elements	12
Introduction Exercise	
Mechanica Functionality in Integrated Mode	13
Introduction	13
Mechanica Tools and Terminology	13
System of Units	13
World Coordinate System	15
Measures	15
Typical Finite Element Procedure	13
3-D Idealizations	17
	1/

Materials	18
Finite Element Mesh	20
Boundary Conditions	21
Analyses	23
Results	24
Mechanica Files	26
Exercise 1	
Beam Elements	29
Objectives	29
Introduction	29
Procedure	30
Start Pro/ENGINEER WILDFIRE	31
Create a part named: beam	32
Setting up in Pro/ENGINEER WILDFIRE for FEA Modeling	33
Creating a datum curve for beam assignment	33
Procedure in Pro/MECHANICA	34
Go to Pro/MECHANICA from Pro/ENGINEER	34
Beam Assignment	35
Beam Section	35
Beam Orientation	37
Beam Definition	38
Constraints	40
Loads	41
Generating Beam Elements	44
Set up and Run Analysis	44
Static Analysis	44
Running the Analysis	46 47
Analysis of Results Approximate Finite Floment Analysis Solution (Theory Warning)	47 50
Approximate Finite Element Analysis Solution (Theory Warning) Conclusion	58
Project 1	57
References	59
Exercise 2	
Shell Elements Using a Plane Stress Model	61
Introduction	61
Overview	61
Exact Solution	62
Procedure in Pro/MECHANICA	64
Shell Properties	65
Generating Elements	66
Loads and Constraints	68
Creating the Analyses	74
Running Analyses	76
Results	78
Project 2	85

Exercise 3	
Shell Elements Using Mid-Surface Compression	87
Objectives	87
Introduction	87
Procedure	89
Start Pro/ENGINEER WILDFIRE	91
Open the Part Named: x_mbr	91
Open the part named: cab_skin.prt	94
Open the assembly cab.asm	96
Boundary Conditions	97
Constraints	97
Loads	98
Assign Materials	100
The Mesh Myth Demystified	100
Creating the Mesh	104
Set up and Run Analysis	106
Debugging a Failed Mesh	108
A few more notes on Automeshing (AutoGEM) versus	
Manual Meshing	109
Convergence	109
Uncertainty	109
The Error Estimate	110
Convergence	111
How to determine the correct convergence level in	
Pro/MECHANICA	112
Convergence Types in Pro/MECHANICA	113
Results	115
Conclusion	120
Project 3	121
References	123
Exercise 4	
Boundary Conditions Regions	125
Objectives	125
Introduction	125
Overview	126
Procedure	127
Start Pro/ENGINEER WILDFIRE	127
Open part: plate_regions.prt	127
Creating Regions	128
Shell Element Creation	128
Assign Materials	129
Boundary Conditions	130
Constraints	130
Loads	131

Meshing of the FEA Model	132
Set up and Run Analysis	134
Static Analysis	134
Results of Static Analysis	136
Conclusion	140
Project 4	140
Exercise 5	
Mass and Spring Elements in Dynamic Motion	143
Objectives	143
Introduction	143
Modal (or Natural Frequency) Analysis	143
Dynamic Analysis	145
General	145
Frequency Response Analysis	145
Transient Response Analysis	147
Dynamic Time Analysis	148
Random Response Analysis	148
Modal Analysis Exercise	
Using Pro/MECHANICA in Integrated Mode	149
Introduction	149
Objectives	149
Overview of Exercise	149
Procedure	150
Settup up the Model and the FEA Modeling	150
Pro/MECHANICA Procedure	151
Shell Creation	151
Part Materials	152
Setting Up User-Defined Measures	154
Mass Simulation	157
Spring Elements	159
Assign Boundary Conditions to the Model	165
Loads	165
Constraints	166
Creating the Dynamic Analyses (constrained)	167
Dynamic Analysis	168
Run the Analysis Dynamic_1	172
Frequency Results	174
Modal Analysis	174
Dynamic Frequency Analysis Results	176
Output Measures	176
Conclusion	179
Project 5	180
Conclusions	184