
## **PRO/MECHANICA WILDFIRE 2.0** ELEMENTS AND APPLICATIONS SERIES

## PART 2 – STUDIES & CONNECTIONS



Pro/MECHANICA Mesh of a Sheet Metal Weldment

Yves Gagnon, M.A.Sc. Professor Mechanical Engineering Technology Okanagan University College



**Schroff Development Corporation** 

www.schroff.com www.schroff-europe.com

## Table of Contents

| Preface                                        | i   |
|------------------------------------------------|-----|
| Acknowledgements                               | i   |
| About the Author                               | ii  |
| Files for this Manual                          | ii  |
| Table of Contents                              | iii |
| Introduction                                   | vi  |
| Exercise 1                                     |     |
| Sensitivity and Optimization Studies           | 1   |
| Introduction                                   | 1   |
| Overview                                       | 3   |
| Procedure                                      | 4   |
| Preliminary Optimization Work                  | 4   |
| Building the Model and Design Parameters       | 4   |
| Start Pro/ENGINEER <sup>®</sup> WILDFIRE       | 4   |
| Open the Part: notched_flatbar                 | 5   |
| Modifying Dimension Cosmetics                  | 5   |
| Creating Shell Mid-surface Compression         | 7   |
| Assign Materials                               | 8   |
| Meshing of the Part                            | 9   |
| Assignment of Boundary Conditions to the Model | 11  |
| Loads                                          | 11  |
| Constraints                                    | 11  |
| Create the Static Analysis                     | 14  |
| Quick Check                                    | 14  |
| Multi-pass Adaptive Convergence                | 16  |
| Results of the Static Analysis                 | 17  |
| Procedure                                      | 19  |
| Local Sensitivity Study                        | 19  |
| Procedure                                      | 33  |
| Global Sensitivity Study                       | 33  |
| Results                                        | 38  |
| Optimization Study on Total Mass               | 41  |
| Procedure                                      | 41  |
| Results                                        | 43  |
| Conclusion                                     | 45  |
| Project 1                                      | 46  |
| Exercise 2                                     |     |
| Spot Welds in Sheet Metal Weldments            | 51  |
| Introduction                                   | 51  |
| Overview                                       | 52  |
| Procedure                                      | 53  |
| Start Pro/ENGINEER <sup>®</sup> WILDFIRE       | 53  |

| Open and Study the Following Parts and Assembly | 53 |
|-------------------------------------------------|----|
| Open the Part cover panel.prt                   | 55 |
| Activate the Window for the Part cover_sm.prt   | 56 |
| Activiate/Open the Assembly panel_assy.asm      | 58 |
| Assign Materials                                | 59 |
| Spot Weld Assignments                           | 60 |
| Assign Boundary Conditions to the Model         | 63 |
| Contraints                                      | 63 |
| Loads                                           | 65 |
| Generating Elements                             | 67 |
| Create the Static Analysis                      | 68 |
| Quick Check                                     | 68 |
| Multi-pass Adaptive Convergence                 | 70 |
| Run the Analysis static_1`                      | 71 |
| Results of the Static Analysis                  | 72 |
| Conclusion                                      | 75 |
| Project 2                                       | 75 |

| Exercise 3                                       |     |
|--------------------------------------------------|-----|
| Continuous Welds in Sheet Metal Weldments        |     |
| Introduction                                     | 77  |
| Overview                                         | 79  |
| Procedure                                        | 80  |
| Start Pro/ENGINEER <sup>®</sup> WILDFIRE         | 80  |
| Open the Assembly File                           | 80  |
| Mid-surface Plane Creation                       | 81  |
| Mid-surface Plane Creation                       | 84  |
| Modelling the Connection Using the Assembly Mode | 85  |
| Create the Weld Connection                       | 87  |
| Assign Materials                                 | 90  |
| Meshing of the FEA Model                         | 90  |
| Assign Boundary Conditions to the Model          | 92  |
| Loads                                            | 92  |
| Constraints                                      | 94  |
| Create the Static Analysis                       | 96  |
| Results of the Static Analysis                   | 99  |
| Conclusion                                       | 102 |
| Project 3                                        | 102 |
| Exercise 4                                       |     |
| Contact Elements and Analysis                    | 103 |
| Objectives                                       | 103 |
| Overview                                         | 103 |
| Procedure                                        | 104 |
| Start Pro/ENGINEER <sup>®</sup> WILDFIRE         | 105 |
| Open the Assembly File                           | 105 |

| Pro/MECHANICA Procedure                 | 106 |
|-----------------------------------------|-----|
| Creating the Contact Connections        | 106 |
| Reviewing Measures                      | 107 |
| Assign Materials                        | 109 |
| Generating the Mesh                     | 109 |
| Assign Boundary Conditions to the Model | 111 |
| Loads                                   | 111 |
| Constraints                             | 113 |
| Create the Static Analysis              | 115 |
| Running the Analysis                    | 117 |
| Results of the Contact Analysis         | 118 |
| Conclusion                              | 125 |

| Exercise 5                                  |     |
|---------------------------------------------|-----|
| Buckling Analysis and Failure Mode          | 127 |
| Overview of the Buckling Theory             | 127 |
| Euler's Formula                             | 130 |
| Johnson's Formula                           | 130 |
| Buckling Analysis in FEA                    | 130 |
| Buckling Analysis in Mechanica <sup>®</sup> | 132 |
| Introduction                                | 132 |
| Objectives                                  | 132 |
| Overview                                    | 133 |
| Start Pro/ENGINEER <sup>®</sup> WILDFIRE    | 134 |
| Open the Part compression_rod.pt            | 134 |
| Assign Materials                            | 135 |
| Meshing of the FEA Model                    | 136 |
| Assign Boundary Conditions to the Model     | 138 |
| Loads                                       | 138 |
| Constraints                                 | 139 |
| Create the Static Analysis                  | 141 |
| Static Analysis                             | 141 |
| Results of Static and Buckling Analyses     | 145 |
| Results of Static Analysis                  | 146 |
| Results of Buckling Analysis                | 148 |
| Conclusion                                  | 149 |