
AN INTRODUCTION TO NUMERICAL METHODS USING MATHCAD

Mathcad Release 14

Khyruddin Akbar Ansari, Ph.D., P.E.

Professor of Mechanical Engineering School of Engineering and Applied Science Gonzaga University

Schroff Development Corporation

www.schroff.com www.schroff-europe.com

TABLE OF CONTENTS

Preface		V
1.	Basics of Mathcad.	1
1.1	Introduction	1
1.2	The Mathcad Screen	1
1.3	Exact Answers	3
1.4	Variables, Functions and Live math.	3
1.5	Feedback	4
1.6	Graphics	5
1.7	Graphing of Functions and Plotting of Data	5
1.8	Animations	7
1.9	The Mathcad Tutorials	7
1.10	Advantages of Mathcad	7
1.11	Computations in Mathcad	10
1.12	The Mathcad Window, Toolbars and Palettes	13
1.13	Mathcad Regions	15
1.14	Entering Math and Text	16
1.15	Mathcad Worksheets, Templates and Styles	17
1.16	Defining Variables	18
1.17	Defining Functions in Mathcad	19
1.18	Building and Editing Mathematical Expressions	21
1.19	Defining Range Variables	23
1.20	Defining Vectors and Matrices	24
1.21	Creating Graphs	28
1.22	Formatting Math, Text and Results	35
1.23	Using Units	39
2.	Introduction to Numerical Methods.	43
2.1	The Use of Numerical Methods in Science and Engineering	43
2.2	Comparison of Numerical Methods with Analytical Methods	43
2.3	Sources of Numerical Errors and their Computation	44
2.4	Taylor Series Expansion	44
	Problems	49
3.	Roots of Equations.	53
3.1	Introduction	53
3.2	Methods Available	53
3.3	Bisection Method	53
3.4.	The Regula Falsi or the False Position Method	58
3.5	Newton-Raphson Method	65
3.6	Use of Mathcad's root and polyroots Functions	71

ii AN INTRODUCTION TO NUMERICAL METHODS USING MATHCAD

3.7	Secant Method	72
3.8.	Method of Successive Substitution	78
3.9	Multiple Roots and Difficulties in Computation	80
3.10.	Solution of Systems of Nonlinear Equations	84
3.11	Solving Systems of Equations using Mathcad's	
	Given and Find Functions	86
3.12	Applications in Root-Finding	87
	3.12.1 Maximum Design Load for a Column	87
	3.12.2 Natural frequencies of Vibration of a Uniform Beam	89
	3.12.3 Solving the Characteristic Equation in Control	
	Systems Engineering	91
	3.12.4 Horizontal Tension in a Uniform Cable	93
	Problems	96
4.	Matrices and Linear Algebra.	103
4.1	Basic Matrix Operations	103
4.2	Use of Mathcad in Performing Matrix Operations	105
4.3	Solution of Linear Algebraic Equations by Using the Inverse	108
4.4	Solution of Linear Algebraic Equations by Cramer's Rule	110
4.5	Solution of Linear Algebraic Equations Using the Function <i>lsolve</i>	112
4.6	The Eigenvalue Problem	114
4.7	Solving the Eigenvalue Problem with Mathcad	116
4.8	Application of the Eigenvalue Problem to Vibration Engineering	117
4.9	Application of the Eigenvalue Problem to Stress Analysis-	
	Determination of Principal Stresses and Principal Directions	125
4.10	Repeated Roots in the Determinantal Equation	128
4.11	Solution of Nonlinear Simultaneous Equations	131
	Problems	134
5.	Numerical Interpolation.	141
5.1	Linear Interpolation	141
5.2	The Method of Undetermined Coefficients	141
5.3	The Gregory-Newton Interpolating Polynomial	144
5.4	Interpolation Using Finite Differences	149
5.5	Newton's Method Utilizing Finite Differences	151
5.6	The Lagrange Interpolating Polynomial	155
5.7	Interpolation Using Linear, Quadratic and Cubic Splines	158
5.8	Interpolation with Mathcad	159
5.9	Applications in Numerical Interpolation	168
	5.9.1 Stress-Strain data for Titanium	168
	5.9.2 Notch Sensitivity of Aluminum	169
	5.9.3 Speech Interference Level	172
	5.9.4 Load-Deflection Data for Elastomeric Mounts	175
	Problems	177

6.	Curve-Fitting.	183
6.1	The Need to Fit a Function to Measured Data	183
6.2	The Method of Least Squares.	184
6.3	Straight Line Regression	185
6.4	Curve-Fitting with a Quadratic Function	188
6.5	Curve-Fit with a Power Function	191
6.6	Curve-Fitting with an Exponential Function	194
6.7	Curve-Fitting with a Linear Combination of Known Functions	199
6.8	Curve-Fitting with Polynomials.	203
6.9	Use of Mathcad's Regression Functions for Curve-Fitting	207
	6.9.1 Linear Regression with Mathcad	207
	6.9.2 Nonlinear Regression with Mathcad	209
	6.9.3 Use of the Function <i>linfit</i>	211
	6.9.4 Use of the Function <i>genfit</i>	213
	6.9.5 Use of the Mathcad Functions <i>logfit, lnfit, pwrfit</i> and <i>expfit</i>	215
	6.9.6 More Examples with Mathcad	220
6.10	Applications in Curve-Fitting	236
	6.10.1 Fatigue Failure Curve for Loading in the Finite Life Range	236
	6.10.2 Temperature Response of an Object Placed in a	•••
	Hot Stream of Air	239
	6.10.3 The Effect of Operating Temperature on the Strength of a	2.42
	Mechanical Element	242
	6.10.4 Drop-Testing of Packaged Articles	245
	Problems	248
7.	Numerical Differentiation	255
7.1	Introduction to Numerical Differentiation and	
	the Use of the Mathcad Derivative Operators	255
7.2	Method of Finite Differences	255
7.3	Interpolating Polynomial Method	259
7.4	Applications in Numerical Differentiation	262
	7.4.1 Determination of Velocities and Accelerations	
	from Given Displacement Data	262
	7.4.2 Determination of Shock Absorber Parameters, and Damper	
	and Spring Restoring Forces from Given Vehicle Displacement Data	266
	Problems	271
8.	Numerical Integration	277
8.1	Introduction to Numerical Integration and	
	the Use of the Mathcad Integral Operator	277
8.2	The Interpolating Polynomial Method	279
8.3	Trapezoidal Rule	280
8.4	Simpson's Rules	283

	8.4.1 Simpson's One-Third Rule	283
	8.4.2 Simpson's Three-Eighth Rule	286
	8.4.3 Limitations of Simpson's Rules	287
8.5	Romberg Integration	288
8.6	Applications in Numerical Integration	301
	8.6.1 Centroid of a Rod Bent into the Shape of A Parabola	301
	8.6.2 Moment of Inertia of a Beam of Semi-Elliptic Cross Section	302
	8.6.3 Launch of a Projectile	303
	8.6.4 Large Oscillations of a Simple Pendulum	304
	Problems	306
9.	Numerical Solution of Ordinary Differential Equations.	311
9.1	Introduction	311
9.2	Taylor Series Method	312
9.3	Euler's Method	317
9.4	Modified Euler's Method	323
9.5	Runge- Kutta Methods	329
	9.5.1 Fourth-Order Runge-Kutta Method	329
	9.5.2 Mathcad Solutions to a First-Order Differential Equation	335
9.6	Systems of Ordinary Differential Equations	341
9.7	Solution of Higher-Order Ordinary Differential Equations	349
9.8	Boundary-Value Problems and the Shooting Method	358
9.9	Applications in Numerical Solution of Ordinary Differential Equations	363
	9.9.1 Response of an Electric R-L Circuit to a Unit-Step Voltage Input	363
	9.9.2 Deflection Curve of a Cantilevered Beam with a Uniformly	
	Distributed Load	364
	9.9.3 Temperature Response of a Solid Steel Ball Placed in a Hot	
	Stream of Air	366
	9.9.4 Nonlinear Vibration of a Simple Pendulum	367
	9.9.5 Transient Vibration of a Spring-Mass-Damper System	270
	Excited by a Pulse Function	370
	9.9.6 Nonlinear Vibration of a Damped System with a	070
	Hardening Spring	373
	9.9.7 Temperature Distribution in the Wall of a Pipe	270
	Carrying a Hot Fluid	378
	9.9.8 Response of an R-L Circuit with a Nonlinear Resistor	382
	9.9.9 The Effect of Damping on the Step Response of a	20.4
	Second-Order Control System	384
	Problems	386
	Bibliography	399
	Index	401