Engineering Analysis with COSMOSWorks Professional 2008

Paul M. Kurowski, Ph.D., P.Eng.

Schroff Development Corporation

www.schroff.com

Table of Contents

Before You Start

Notes on hands-on exercises Prerequisites Selected terminology

1: Introduction

What is Finite Element Analysis? Finite Element Analysis used by Design Engineers Objectives of FEA for Design Engineers What is COSMOSWorks? Fundamental steps in an FEA project Errors in FEA A closer look at finite elements What is calculated in FEA? How to interpret FEA results Units of measure Using on-line help Limitations of COSMOSWorks

2: Static analysis of a plate

Using COSMOSWorks interface Linear static analysis with solid elements The influence of mesh density on results Finding reaction forces Controlling discretization errors by the convergence process Presenting FEA results in desired format 1

27

3: Static analysis of an L-bracket	65
Stress singularities	
Differences between modeling errors and discretization errors	
Using mesh controls	
Analysis in different SolidWorks configurations	
4: Stress and frequency analysis of a thin plate	79
Use of shell elements for analysis of thin walled structures	
Frequency analysis	
5: Static analysis of a link	95
Symmetry boundary conditions	
Defining restraints in a local coordinate system	
Preventing rigid body motions	
Limitations of small displacements theory	
6: Frequency analysis of a tuning fork	103
Frequency analysis with and without supports	
Rigid body modes	
The role of supports in frequency analysis	
7: Thermal analysis of a pipeline component and a heater	109
Steady state thermal analysis	
Analogies between structural and thermal analysis	
Analysis of temperature distribution and heat flux	
8: Thermal analysis of a heat sink	123
Analysis of an assembly	
Global and local Contact/Gaps conditions	
Steady state thermal analysis	
Transient thermal analysis	
Thermal resistance layer	
Use of section views in results plots	

9: Static analysis of a hanger	139
Analysis of assembly	
Global and local Contact/Gaps conditions	
Hierarchy of Contact/Gaps conditions	
10: Analysis of contact stress between two plates	151
Assembly analysis with surface contact conditions	
Contact stress analysis	
Avoiding rigid body modes	
11: Thermal stress analysis of a bi-metal beam	157
Thermal stress analysis of an assembly	157
Use of various techniques in defining restraints	
Shear stress analysis	
Shear suces analysis	
12: Buckling analysis of an L-beam	165
Buckling analysis	
Buckling load safety factor	
Stress safety factor	
13: Design optimization of a plate in tension	169
Structural optimization analysis	107
Optimization goal	
Optimization constraints	
Design variables	
14: Static analysis of a bracket using adaptive solution methods	s 179
P-elements	
P-adaptive solution method	
Comparison of h-elements and p-elements	

15: Design sensitivity analysis of hinge supported beam	1
Design sensitivity analysis using Design Scenario	
16: Drop test of a coffee mug	2
Drop test analysis	
Stress wave propagation	
Direct time integration solution	
17: Selected nonlinear problems	2
Large displacements analysis	
Creating a shell element mesh on the face of a solid	
18: Mixed meshing problem	2
Using solid and shell elements in the same mesh	
19: Analysis of a weldment using beam elements	2
Comparison between solid, shell and beam elements	
Using beam elements for analysis of a weldment	
20: Dynamic Analysis – Modal Time History and Harmonic	2
Modal Time History analysis (Time Response)	
Harmonic analysis (Frequency Response)	
Modal Superposition Method	
Damping	
21: Analysis of random vibration	2
Random vibrations	
Power Spectral Density	
RMS results	
PSD results	
Modal excitation	

22: Miscellaneous topics	297
Mesh quality	
Solvers and solvers options	
Displaying mesh in result plots	
Automatic reports	
E drawings	
Non-uniform loads	
Bearing load	
Frequency analysis with pre-stress	
Shrink fit analysis	
Connectors	
Pin connector	
Bolt connector	
Remote Load/Mass	
23: Implementation of FEA into the design process	317
FEA driven design process	
FEA project management	
FEA project checkpoints	
FEA report	
24: Glossary of terms	325

25: Resources available to FEA Users 333