
Engineering Analysis with SolidWorks Simulation 2009

Paul M. Kurowski, Ph.D., P.Eng.

Schroff Development Corporation

www.schroff.com

1

5

27

61

Table of Contents

Before You Start
Notes on hands-on exercises
Prerequisites
Selected terminology
1: Introduction
What is Finite Element Analysis?
Finite Element Analysis used by Design Engineers
Objectives of FEA for Design Engineers
What is SolidWorks Simulation ?
Fundamental steps in an FEA project
Errors in FEA
A closer look at finite elements
What is calculated in FEA?
How to interpret FEA results
Units of measure
Using on-line help
Limitations of SolidWorks Simulation

2: Static analysis of a plate

Using SolidWorks **Simulation** interface Linear static analysis with solid elements The influence of mesh density on results Controlling discretization errors by the convergence process Finding reaction forces Presenting FEA results in desired format

3: Static analysis of an L-bracket

Stress singularities Differences between modeling errors and discretization errors

ii

Using mesh controls	
Analysis in different SolidWorks configurations	
Nodal stresses, element stresses	
4: Stress and frequency analysis of a thin plate	75
Use of shell elements for analysis of thin walled structures	
Frequency analysis	
5: Static analysis of a link	91
Symmetry boundary conditions	
Preventing rigid body motions	
Limitations of small displacements theory	
6: Frequency analysis of a tuning fork	99
Frequency analysis with and without supports	
Rigid body modes	
The role of supports in frequency analysis	
Symmetric and anti-symmetric modes	
7: Thermal analysis of a pipeline component and a heater	107
Analogies between structural and thermal analysis	
Steady state thermal analysis	
Analysis of temperature distribution and heat flux	
8: Thermal analysis of a heat sink	123
Analysis of an assembly	
Global and local Contact/Gaps conditions	
Steady state thermal analysis	
Transient thermal analysis	
Thermal resistance layer	
Use of section views in results plots	

9: Static analysis of a hanger	137
Analysis of assembly	
Global and local Contact/Gaps conditions	
Hierarchy of Contact/Gaps conditions	
10: Analysis of contact stress between two plates	149
Assembly analysis with surface contact conditions	
Contact stress analysis	
Avoiding rigid body modes	
11: Thermal stress analysis of a bi-metal beam	155
Thermal stress analysis of an assembly	
Use of various techniques in defining restraints	
Shear stress analysis	
12: Buckling analysis of an L-beam	163
Buckling analysis	
Buckling load safety factor	
Stress safety factor	
13: Design optimization of a plate in tension	169
Structural optimization analysis	
Optimization goal	
Optimization constraints	
Design variables	
14: Static analysis of a bracket using adaptive solution methods	179
H-adaptive solution method	
P-adaptive solution method	
Comparison of h-elements and p-elements	

15: Design sensitivity analysis of hinge supported beam Design sensitivity analysis using Design Scenario	195
Design sensitivity undrysis using Design Seenario	
16: Drop test of a porcelain ring	205
Drop test analysis	
Stress wave propagation	
Direct time integration solution	
17: Selected nonlinear problems	213
Large displacements analysis	
Membrane effects	
Non-linear material analysis	
Residual stress	
18: Mixed meshing problem	24]
Using solid and shell elements in the same mesh	
19: Analysis of a weldment using beam elements	247
Different levels of idealization implemented in finite elements	
Preparation of SolidWorks model for analysis with beam elements	
Beam elements and truss elements	
Analysis of results using beam elements	
Limitations of analysis with beam elements	
20: Dynamic Analysis – Modal Time History and Harmonic	26
Modal Time History analysis (Time Response)	
Harmonic analysis (Frequency Response)	
Modal Superposition Method	
Damping	

21: Analysis of random vibration

Random vibrations Power Spectral Density RMS results PSD results Modal excitation

22: Miscellaneous topics

Mesh quality Solvers and solvers options Displaying mesh in result plots Automatic reports E drawings Non-uniform loads Frequency analysis with pre-stress Shrink fit analysis Connectors Remote loads Circular symmetry

23: Implementation of FEA into the design process	333
Verification and Validation of FEA results	
FEA driven design process	
FEA project management	
FEA project checkpoints	
FEA report	
24: Glossary of terms	351
25: Resources available to FEA Users	359

309