
Engineering Analysis with SolidWorks Simulation 2010

Paul M. Kurowski, Ph.D., P.Eng.

Schroff Development Corporation

Design Generator, Inc.

Table of contents

Befo	ore You Start	1
	Notes on hands-on exercises	
	Prerequisites	
	Selected terminology	
1. T.	ntroduction	5
1; 11		5
	What is Finite Element Analysis?	
	Finite Element Analysis used by Design Engineers	
	Objectives of FEA for Design Engineers	
	What is SolidWorks Simulation?	
	Fundamental steps in an FEA project	
	Errors in FEA	
	A closer look at finite elements	
	What is calculated in FEA?	
	How to interpret FEA results	
	Units of measure	
	Using on-line help	
	Limitations of SolidWorks Simulation	
2: St	tatic analysis of a plate	29

- Using SolidWorks Simulation interface Linear static analysis with solid elements The influence of mesh density on results Controlling discretization errors by the convergence process Finding reaction forces
- Presenting FEA results in desired format

3: Static analysis of an L-bracket	69
Stress singularities	
Differences between modeling errors and discretization errors	
Using mesh controls	
Analysis in different SolidWorks configurations	
Nodal stresses, element stresses	
4: Stress and frequency analyses of a pipe support	85
Use of shell elements for analysis of thin walled structures	
Frequency analysis	
5: Static analysis of a link	101
Symmetry boundary conditions	
Preventing rigid body motions	
Limitations of small displacements theory	
6: Frequency analysis of a tuning fork and a plastic part	111
Frequency analysis with and without supports	
Rigid body modes	
The role of supports in frequency analysis	
Symmetric and anti-symmetric modes	
7: Thermal analysis of a pipeline component and a heater	119
Analogies between structural and thermal analysis	
Steady state thermal analysis	
Analysis of temperature distribution and heat flux	

8: Thermal analysis of a heat sink	137
Analysis of an assembly	
Global and local Contact/Gaps conditions	
Steady state thermal analysis	
Transient thermal analysis	
Thermal resistance layer	
Use of section views in results plots	
9: Static analysis of a hanger	
Analysis of assembly	
Global and local Contact/Gaps conditions	
Hierarchy of Contact/Gaps conditions	
10: Analysis of contact stress between two plates	
Assembly analysis with surface contact conditions	
Contact stress analysis	
Avoiding rigid body modes	
11: Thermal stress analysis of a bi-metal beam	175
Thermal stress analysis of an assembly	
Use of various techniques in defining restraints	
Shear stress analysis	
12: Buckling analysis of an L-beam	183
Buckling analysis	
Buckling load safety factor	
Stress safety factor	
13: Static analysis of a bracket using adaptive solution methods	189
H-adaptive solution method	
P-adaptive solution method	
Comparison of h-elements and p-elements	

14: Drop test of a porcelain ring	207
Drop test analysis	
Stress wave propagation	
Direct time integration solution	
15: Selected nonlinear problems	215
Large displacements analysis	
Membrane effects	
Following and non following load	
Non-linear material analysis	
Residual stress	
16: Mixed meshing problem	255
Using solid and shell elements in the same	mesh
Mesh compatibility	
17: Analysis of a weldment using beam elem	ients 261
Different levels of idealization implemented	d in finite elements
Preparation of SolidWorks model for analysis	sis with beam elements
Beam elements and truss elements	
Analysis of results using beam elements	
Limitations of analysis with beam elements	
18: Vibration Analysis – Modal Time Histor	ry and Harmonic 287
Modal Time History analysis (Time Respor	•
Harmonic analysis (Frequency Response)	,
Modal Superposition Method	
Damping	

19: Analysis of random vibration

Random vibrations Power Spectral Density RMS results PSD results Modal excitation

20: Miscellaneous topics

Mesh quality Solvers and solvers options Displaying mesh in result plots Automatic reports E drawings Frequency analysis with pre-stress Shrink fit analysis Pin connector Bolt connector Edge weld connector Bearing connector Remote loads Circular symmetry

21: Implementation of FEA into the design process	373
Verification and Validation of FEA results	
FEA driven design process	
FEA project management	
FEA project checkpoints	
FEA report	
22: Glossary of terms	391
23: Resources available to FEA Users	399

331