
Engineering Analysis with SolidWorks Simulation 2012

Paul M. Kurowski

Visit the following websites to learn more about this book:

Table of contents

Befor	re You Start	1
	Notes on hands-on exercises and functionality of Simulation	
	Prerequisites	
	Selected terminology	
1: Int	troduction	5
	What is Finite Element Analysis?	
	Finite Element Analysis used by Design Engineers	
	Objectives of FEA for Design Engineers	
	What is SolidWorks Simulation?	
	Fundamental steps in an FEA project	
	Errors in FEA	
	A closer look at finite elements	
	What is calculated in FEA?	
	How to interpret FEA results	
	Units of measure	
	Using online help	
	Limitations of SolidWorks Simulation Professional	
2: Sta	atic analysis of a plate	31
	Using the SolidWorks Simulation interface	
	Linear static analysis with solid elements	
	Controlling discretization errors with the convergence process	
	Finding reaction forces	
	Presenting FEA results in a desired format	
3: Sta	atic analysis of an L-bracket	71
	Stress singularities	
	Differences between modeling errors and discretization errors	
	Using mesh controls	
	Analysis in different SolidWorks configurations	
	Nodal stresses, element stresses	

4: Stress and frequency analyses of a pipe support	89
Use of shell elements	
Frequency analysis	
Bearing load	
5: Static analysis of a link	107
Symmetry boundary conditions	
Preventing rigid body motions	
Limitations of the small displacement theory	
6: Frequency analysis of a tuning fork and a plastic part	117
Frequency analysis with and without supports	
Rigid body modes	
The role of supports in frequency analysis	
Symmetric and anti-symmetric modes	
7: Thermal analysis of a pipe connector and a heater	125
Analogies between structural and thermal analysis	
Steady state thermal analysis	
Analysis of temperature distribution and heat flux	
Thermal boundary conditions	
Thermal stresses	
Vector plots	
8: Thermal analysis of a heat sink	143
Analysis of an assembly	
Global and local Contact/Gap conditions	
Steady state thermal analysis	
Transient thermal analysis	
Thermal resistance layer	
Use of section views in result plots	
9: Static analysis of a hanger	159
Global and local Contact conditions	
Hierarchy of Contact conditions	

10: Analysis of contact stress	
Contact conditions	
Contact stress analysis	
11: Thermal stress analysis of a bi-metal loop	183
Thermal deformation and thermal stress analysis	
Eliminating rigid body motions	
Saving model in deformed shape	
12: Buckling analysis of an I-beam	193
Buckling analysis	
Buckling load safety factor	
Stress safety factor	
13: Static analysis of a bracket using adaptive solution methods	201
h-adaptive solution method	
p-adaptive solution method	
Comparison between h-elements and p-elements	
14: Drop test	219
Drop test analysis	
Stress wave propagation	
Direct time integration solution	
15: Selected nonlinear problems	227
Large displacement analysis	
Analysis with shell elements	
Membrane effects	
Following and non-following load	
Nonlinear material analysis	
Residual stress	

16: Mixed meshing problem	269
Using solid and shell elements in the same mesh	
Mixed mesh compatibility	
Manual and automatic findings of contact sets	
17: Analysis of a weldment using beam elements	277
Different levels of idealization implemented in finite elements	
Preparation of a SolidWorks model for analysis with beam elements	
Beam elements and truss elements	
Analysis of results using beam elements	
Limitations of analysis with beam elements	
18: Review of 2D problems	303
Classification of finite elements	
2D axi-symmetric element	
2D plane stress element	
2D plane strain element	
19: Vibration Analysis - Modal Time History and Harmonic	327
Modal Time History analysis (Time Response)	
Harmonic analysis (Frequency Response)	
Modal Superposition Method	
Damping	
20: Analysis of random vibration	357
Random vibration	
Power Spectral Density	
RMS results	
PSD results	
Modal excitation	

21: Miscellaneous topics	
Mesh quality	
Solvers and solvers options	
Displaying mesh in result plots	
Automatic reports	
E drawings	
Non-uniform loads	
Frequency analysis with pre-stress	
Shrink fit analysis	
Rigid connector	
Pin connector	
Bolt connector	
Remote load/mass	
Weld connector	
Bearing connector	
Circular symmetry	
Strongly nonlinear problem	
Terminology issues in the Finite Element Analysis	
22: Implementation of FEA into the design process	427
Verification and Validation of FEA results	
FEA driven design process	
FEA project management	
FEA project checkpoints	
FEA reports	
23: Glossary of terms	
24: Resources available to FEA users	453
25: List of exercises	455