
Thermal Analysis with

SolidWorks Simulation 2014

Paul M. Kurowski

Visit the following websites to learn more about this book:

amazon.com

Table of contents

About t	the Author	i
Acknov	vledgements	i
Table o	f contents	ii
Before '	You Start	1
N	otes on hands-on exercises and functionality of Simulation	
Pı	rerequisites	
Se	elected terminology	
1: Intro	oduction	5
Н	eat transfer by conduction	
Н	eat transfer by convection	
Н	eat transfer by radiation	
T	hermal boundary conditions	
A	nalogies between thermal and structural analysis	
T	hermal elements: solids and shells	
So	calar and vector entities, presenting results	
St	eady state thermal analysis	
Tı	ransient thermal analysis	
Li	inear thermal analysis	
N	onlinear thermal analysis	
2: Hollo	ow plate	21
	eat transfer by conduction	
	eat transfer by convection	
D	ifferent ways of presenting results of thermal analysis	
	onvergence analysis in thermal problems	
So	olid elements in heat transfer problems	
Sl	nell elements in heat transfer problems	
3: L br:	acket	33
	eat transfer by conduction	
	se of 2D models	
Si	ngularities in thermal problems	

4: Thermal analysis of a round bar	
Heat transfer by conduction	
Thermal conductivity	
Heat transfer by convection	
Convection boundary conditions	
Thermal resistance	
Prescribed temperature boundary conditions	
Heat power	
Heat flux	
5: Floor heating duct – part 1	55
Heat transfer by conduction	
Prescribed temperature boundary conditions	
Heat power	
Heat flux	
Heat flux singularities	
Analogies between structural and thermal analysis	
6: Floor heating duct – part 2	
Heat transfer by convection	
Free and forced convection	
Convection coefficient	
Ambient (bulk) temperature	
7: Hot plate	81
Transient thermal analysis	
Conductive heat transfer	
Convective heat transfer	
Heat power	
Thermostat	
Thermal inertia	
8: Thermal and thermal stress analysis of a coffee mug	97
Transient thermal analysis	
Thermal stress analysis	
Thermal symmetry boundary conditions	
Structural symmetry boundary conditions	
Use of soft springs	

9: Thermal and thermal buckling analysis of a link	109
Buckling caused by thermal effects	
Interpretation of Buckling Load Factor	
10: Thermal analysis of a heat sink	115
Analysis of an assembly	
Thermal contact conditions	
Steady state thermal analysis	
Transient thermal analysis	
Thermal resistance layer	
Thermal symmetry boundary conditions	
11: Radiative power of a black body	129
Heat transfer by radiation	
Emissivity	
Black body	
Radiating heat out to space	
Transient thermal analysis	
Heat power	
Heat energy	
12: Radiation of a hemisphere	141
Heat transfer by radiation	
Emissivity	
Radiating heat out to space	
View factors	
Heat power	
13: Radiation between two bodies	147
Heat transfer by radiation	
Emissivity	
Radiating heat out to space	
View factors	
Heat power	
Closed system	
Open system	

14: Heat transfer with internal fluid flow	
Introduction to Flow Simulation	
Using Flow Simulation for finding convection coefficients in internal fluid flow	
Interfacing between Flow Simulation and Thermal analysis	
Interfacing between Flow Simulation and structural (Static) analysis	
15: Heat transfer with external fluid flow	203
Using Flow Simulation for finding convection coefficients in external fluid flow	
Interfacing between Flow Simulation and Thermal analysis	
16: Radiative Heat Transfer	217
Radiative heat transfer problem solvable with Thermal Study in SolidWorks Simulation and with Flow Simulation	
17: NAFEMS Benchmarks	235
Importance of benchmarks	
One dimensional heat transfer with radiation	
One dimensional transient heat transfer	
Two dimensional heat transfer with convection	
18: Summary and miscellaneous topics	251
Summary of exercises in chapters 1-13	
Nonlinear transient problems	
Advanced options of thermal study	
Closing remarks	
19: Glossary of terms	
20: References	271
21: List of exercises	273