
Vibration Analysis

with SolidWorks Simulation 2014

Paul M. Kurowski

Visit the following websites to learn more about this book:

amazon.com

Table of contents

Before	you start	1
	Notes on hands-on exercises and functionality of Simulation	
	Prerequisites	
	Selected terminology	
1: Intro	oduction to vibration analysis	5
	Differences between a mechanism and a structure	
	Difference between dynamic analysis and vibration analysis	
	Rigid body motion and degrees of freedom	
	Kinematic pairs	
	Discrete and distributed vibration systems	
	Single degree of freedom and multi degree of freedom vibration systems	
	Mode of vibration	
	Rigid Body Mode	
	Modal superposition method	
	Direct integration method	
	Vibration Analysis with SolidWorks Simulation and SolidWorks Motion	
	Functionality of SolidWorks Simulation and SolidWorks Motion	
	Terminology issues	
	Summary	
2: Intro	oduction to modal analysis	31
	Modal analysis	
	Properties of a mode of vibration	
	Interpreting results of modal analysis	
	Normalizing displacement results in modal analysis	
3: Mod	al analysis of distributed systems	39
	Modal analysis of distributed systems	
	Meshing considerations in modal analysis	
	Importance of mesh quality in modal analysis	
	Importance of modeling supports	
	Interpretation of results of modal analysis	

4: N	Modal analysis – the effect of pre-stress	45
	Modal analysis with pre-stress	
	Modal analysis and buckling analysis	
	Artificial stiffness	
5: N	Modal analysis - properties of lower and higher modes	59
	Modal analysis using shell elements	
	Properties of lower and higher modes	
	Convergence of frequencies with mesh refinement	
6: N	Modal analysis – mass participations, properties of modes	65
	Modal mass	
	Modes of vibration of axisymmetric structures	
	Modeling bearing restraints	
	Using modal analysis to find "weak spots"	
7: Modal analysis – mode separation		
	Modal analysis with shell elements	
	Modes of vibration of symmetric structures	
	Symmetry boundary conditions in modal analysis	
	Anti-symmetry boundary condition in modal analysis	
8: N	Iodal analysis – axi-symmetric structures	85
	Modes of vibration of axi-symmetric structures	
	Repetitive modes	
	Solid and shell element modeling	
9: N	Iodal analysis – locating structurally weak spots	89
	Modal analysis with beam elements	
	Modes of vibration of symmetric structures	
	Using results of modal analysis to identify potential design problems	
10:	Modal analysis – a diagnostic tool	93
	Modal analysis used to detect problems with restraints	
	Modal analysis used to detect connectivity problems	
	Rigid Body Motions of assemblies	
11:	Harmonic excitation of discrete systems	99
	Steady state harmonic excitation	
	Frequency sweep	
	Displacement base excitation	

Velocity base excitation Acceleration base excitation

	Resonance	
	Modal damping	
12: Har	monic base excitation of distributed systems	129
	Steady state harmonic excitation	
	Frequency sweep	
	Displacement base excitation	
	Velocity base excitation	
	Acceleration base excitation	
	Resonance	
	Modal damping	
13: Om	ega square harmonic force excitation	149
	Unbalanced rotating machinery	
	Resonance	
	Modal damping	
	Omega square excitation	
	Steady state response	
14: Tim	e response analysis, resonance, beating	159
	Time Response analysis	
	Base excitation	
	Resonance	
	Modal damping	
	Beating phenomenon	
	Transient response	
	Steady state response	
	Mass participation	
15: Vibi	ation absorption	173
	Torsional vibration	
	Resonance	
	Modal damping	
	Vibration absorption	
	Frequency Response	
16: Ran	dom Vibration	189
	Random vibration	
	Power Spectral Density	

Vibration Analysis with SolidWorks Simulation 2014

RMS results PSD results

Modal excitation	
17: Response Spectrum analysis	213
Non stationary random base excitation	
Seismic response analysis	
Seismic records	
Response spectrum method	
Generating response spectra	
Methods of modal combinations	
18: Nonlinear vibration	229
Differences between linear and nonlinear structural analysis	
Types of nonlinearities	
Bending stiffness	
Membrane stiffness	
Modal damping	
Rayleigh damping	
Linear Time response analysis	
Nonlinear Time response analysis	
Modal Superposition Method	
Direct Integration Method	
19: Vibration benchmarks	
20: Glossary of terms	
21: References	
22: List of exercises	293