
## **Engineering Analysis**

## with SOLIDWORKS Simulation 2015



Paul M. Kurowski





## Visit the following websites to learn more about this book:



amazon.com





## **Table of contents**

| About the Author                                                                             | i  |
|----------------------------------------------------------------------------------------------|----|
| Acknowledgements                                                                             | i  |
| Table of contents                                                                            | ii |
| Before You Start  Notes on hands-on exercises and functionality of Simulation  Prerequisites | 1  |
| Selected terminology  1: Introduction                                                        | 5  |
| What is Finite Element Analysis?                                                             |    |
| Finite Element Analysis used by Design Engineers                                             |    |
| Objectives of FEA for Design Engineers                                                       |    |
| What is SOLIDWORKS Simulation?                                                               |    |
| Fundamental steps in an FEA project                                                          |    |
| Errors in FEA                                                                                |    |
| A closer look at finite elements                                                             |    |
| What is calculated in FEA?                                                                   |    |
| How to interpret FEA results                                                                 |    |
| Units of measure                                                                             |    |
| Using online help                                                                            |    |
| Limitations of Static studies                                                                |    |
| 2: Static analysis of a plate                                                                | 31 |
| Using the SOLIDWORKS Simulation interface                                                    |    |
| Linear static analysis with solid elements                                                   |    |
| Controlling discretization error with the convergence process                                |    |
| Finding reaction forces                                                                      |    |
| Presenting FEA results in a desired format                                                   |    |

| : Static analysis of an L-bracket                             | 77  |
|---------------------------------------------------------------|-----|
| Stress singularities                                          |     |
| Differences between modeling errors and discretization errors |     |
| Using mesh controls                                           |     |
| Analysis in different SOLIDWORKS configurations               |     |
| Nodal stresses, element stresses                              |     |
| 4: Static and frequency analyses of a pipe support            | 97  |
| Use of shell elements                                         |     |
| Frequency analysis                                            |     |
| Bearing load                                                  |     |
| 5: Static analysis of a link                                  | 121 |
| Symmetry boundary conditions                                  |     |
| Preventing rigid body motions                                 |     |
| Limitations of the small displacements theory                 |     |
| 6: Frequency analysis of a tuning fork and a plastic part     | 131 |
| Frequency analysis with and without supports                  |     |
| Rigid body modes                                              |     |
| The role of supports in frequency analysis                    |     |
| Symmetric and anti-symmetric modes                            |     |
| 7: Thermal analysis of a pipe connector and a heater          | 139 |
| Analogies between structural and thermal analysis             |     |
| Steady state thermal analysis                                 |     |
| Analysis of temperature distribution and heat flux            |     |
| Thermal boundary conditions                                   |     |
| Thermal stresses                                              |     |
| Vector plots                                                  |     |
| 8: Thermal analysis of a heat sink                            | 157 |
| Analysis of an assembly                                       |     |
| Global and local Contact conditions                           |     |
| Steady state thermal analysis                                 |     |
| Transient thermal analysis                                    |     |
| Thermal resistance layer                                      |     |
| Use of section views in result plots                          |     |

| 9: Static analysis of a hanger                                   | 173 |
|------------------------------------------------------------------|-----|
| Global and local Contact conditions                              |     |
| Hierarchy of Contact conditions                                  |     |
| 10: Thermal stress analysis of a bi- metal loop                  | 187 |
| Thermal deformation and thermal stress analysis                  |     |
| Eliminating rigid body motions                                   |     |
| Converting Sheet Metal bodies to Solid bodies                    |     |
| "Parasolid" round trip                                           |     |
| Saving model in deformed shape                                   |     |
| 11: Buckling analysis of I-beam                                  | 197 |
| Buckling analysis                                                |     |
| Buckling load safety factor                                      |     |
| Stress safety factor                                             |     |
| 12: Static analysis of a bracket using adaptive solution methods | 205 |
| h-adaptive solution method                                       |     |
| p-adaptive solution method                                       |     |
| Comparison between h-elements and p-elements                     |     |
| 13: Drop test                                                    | 223 |
| Drop test analysis                                               |     |
| Stress wave propagation                                          |     |
| Direct time integration solution                                 |     |
| 14: Selected nonlinear problems                                  | 231 |
| Large displacement analysis                                      |     |
| Analysis with shell elements                                     |     |
| Membrane effects                                                 |     |
| Following and non-following load                                 |     |
| Nonlinear material analysis                                      |     |
| Residual stress                                                  |     |
| 15: Mixed meshing problem                                        | 275 |
| Using solid and shell elements in the same mesh                  |     |
| Mixed mesh compatibility                                         |     |
| Manual and automatic finding of contact sets                     |     |
| Shell Manager                                                    |     |

| 16: Analysis of a weldment using beam elements                                                                                                                                                  | 289 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Different levels of idealization implemented in finite elements                                                                                                                                 |     |
| Preparation of a SOLIDWORKS model for analysis with beam elements                                                                                                                               |     |
| Beam elements and truss elements                                                                                                                                                                |     |
| Analysis of results using beam elements                                                                                                                                                         |     |
| Limitations of analysis with beam elements                                                                                                                                                      |     |
| 17: Review of 2D problems                                                                                                                                                                       | 315 |
| Classification of finite elements                                                                                                                                                               |     |
| 2D axi-symmetric element                                                                                                                                                                        |     |
| 2D plane stress element                                                                                                                                                                         |     |
| 2D plane strain element                                                                                                                                                                         |     |
| 10. When the Amelian Model Theory Wistons and Henry with                                                                                                                                        | 351 |
| 18: Vibration Analysis - Modal Time History and Harmonic                                                                                                                                        | 331 |
| Modal Time History analysis (Time Response)                                                                                                                                                     | 331 |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                           | 331 |
| Modal Time History analysis (Time Response)                                                                                                                                                     | 331 |
| Modal Time History analysis (Time Response)<br>Harmonic analysis (Frequency Response)                                                                                                           | 331 |
| Modal Time History analysis (Time Response) Harmonic analysis (Frequency Response) Modal Superposition Method                                                                                   | 381 |
| Modal Time History analysis (Time Response) Harmonic analysis (Frequency Response) Modal Superposition Method Damping                                                                           |     |
| Modal Time History analysis (Time Response) Harmonic analysis (Frequency Response) Modal Superposition Method Damping  19: Analysis of random vibration                                         |     |
| Modal Time History analysis (Time Response) Harmonic analysis (Frequency Response) Modal Superposition Method Damping  19: Analysis of random vibration Random vibration                        |     |
| Modal Time History analysis (Time Response) Harmonic analysis (Frequency Response) Modal Superposition Method Damping  19: Analysis of random vibration Random vibration Power Spectral Density |     |

| 20: Miscellaneous topics                          | 401 |
|---------------------------------------------------|-----|
| Mesh quality                                      |     |
| Solvers and solvers options                       |     |
| Displaying mesh in result plots                   |     |
| Automatic reports                                 |     |
| E drawings                                        |     |
| Non uniform loads                                 |     |
| Frequency analysis with pre-stress                |     |
| Interference fit analysis                         |     |
| Rigid connector                                   |     |
| Pin connector                                     |     |
| Bolt connector                                    |     |
| Remote load/mass                                  |     |
| Weld connector                                    |     |
| Bearing connector                                 |     |
| Cyclic symmetry                                   |     |
| Strongly nonlinear problem                        |     |
| Submodeling                                       |     |
| Terminology issues in the Finite Element Analysis |     |
| 21: Implementation of FEA into the design process | 465 |
| Verification and Validation of FEA results        |     |
| FEA driven design process                         |     |
| FEA project management                            |     |
| FEA project checkpoints                           |     |
| FEA reports                                       |     |
| 22: Glossary of terms                             | 483 |
| 23: Resources available to FEA users              | 491 |
| 24: List of exercises                             | 497 |