
Engineering Analysis

with SOLIDWORKS Simulation 2022

Paul M. Kurowski

Visit the following websites to learn more about this book:

Table of contents

About the Author	i
About the Author	•
Acknowledgements	i
Table of contents	ii
Before You Start	1
Notes on hands-on exercises and functionality of SOLIDWORKS Simulation	
Prerequisites	
Selected terminology	
Graphics	
1: Introduction	5
What is Finite Element Analysis?	
Finite Element Analysis used by Design Engineers	
Objectives of FEA for Design Engineers	
What is SOLIDWORKS Simulation?	
Fundamental steps in an FEA project	
Errors in FEA	
A closer look at finite elements	
What is calculated in FEA?	
How to interpret FEA results	
Units of measure	
Using online help	
Limitations of Static studies	
2: Static analysis of a plate	31
Using the SOLIDWORKS Simulation interface	
Linear static analysis with solid elements	
Controlling discretization error with the convergence process	
Finding reaction forces	
Presenting FEA results in a desired format	
3: Static analysis of an L-bracket	1
Stress singularities	
Differences between modeling errors and discretization errors	
Using mesh controls	
Analysis in different SOLIDWORKS configurations	

Nodal stresses, element stresses

4: S	tatic and frequency analyses of a pipe support	99
	Use of shell elements	
	Frequency analysis	
	Bearing load	
5: S	tatic analysis of a link	127
	Symmetry boundary conditions	
	Preventing rigid body motions	
	Limitations of the small displacements theory	
6: F	requency analysis of a tuning fork and a plastic part	137
	Frequency analysis with and without supports	
	Rigid body modes	
	The role of supports in frequency analysis	
	Symmetric and anti-symmetric modes	
7: T	Thermal analysis of a pipe connector and a heater	147
	Analogies between structural and thermal analysis	
	Steady state thermal analysis	
	Analysis of temperature distribution and heat flux	
	Thermal boundary conditions	
	Thermal stresses	
	Vector plots	
8: T	Thermal analysis of a heat sink	167
	Analysis of an assembly	
	Global and local Contact conditions	
	Steady state thermal analysis	
	Transient thermal analysis	
	Thermal resistance layer	
	Use of section views in result plots	
9: S	tatic analysis of a hanger	183
	Global and local Contact conditions	
	Hierarchy of Contact conditions	
10:	Thermal stress analysis of a bi-metal loop	193
-	Thermal deformation and thermal stress analysis	, -
	Converting Sheet Metal hodies to Solid hodies	

"Parasolid" round trip

Saving model in deformed shape	
11: Buckling analysis of an I-beam	201
Buckling analysis	
Buckling load safety factor	
Stress safety factor	
12: Static analysis of a bracket using adaptive solution methods	209
h-adaptive solution method	
p-adaptive solution method	
Comparison between h-elements and p-elements	
13: Drop test	227
Drop test analysis	
Stress wave propagation	
Direct time integration solution	
14: Selected nonlinear problems	239
Large displacement analysis	
Analysis with shell elements	
Membrane effects	
Following and non-following load	
Nonlinear material analysis	
Residual stress	
15: Mixed meshing problem	283
Using solid and shell elements in the same mesh	
Mixed mesh compatibility	
Manual and automatic finding of contact sets	
Shell Manager	
16: Analysis of weldments using beam and truss elements	293
Different levels of idealization implemented in finite elements	
Preparation of a SOLIDWORKS model for analysis with beam elements	
Beam elements and truss elements	
Analysis of results using beam elements	
Limitations of analysis with beam elements	
17: Review of 2D problems	321
Classification of finite elements	

2D axisymmetric element	
2D plane stress element	
2D plane strain element	
18: Vibration analysis - modal time history and harmonic	349
Modal Time History analysis (Time Response)	
Harmonic analysis (Frequency Response)	
Modal Superposition Method	
Damping	
19: Analysis of random vibration	377
Random vibration	
Power Spectral Density	
RMS results	
PSD results	
Modal excitation	
20: Topology Optimization	397
Definition of Topology Optimization	
Design space	
Goals and constraints	
Topology Optimization criteria	
Examples of Topology Optimization	
21: Miscellaneous topics – part 1	417
Mesh quality	
Solvers and solvers options	
Displaying mesh in result plots	
Automatic reports	
E drawings	
Non uniform loads	
Frequency analysis with pre-stress	
Interference fit analysis	
Rigid connector	
Pin connector	
Bolt connector	
Remote load/mass	
Weld connector	
Bearing connector	
Cyclic symmetry	
Strongly nonlinear problem	

Engineering Analysis with SOLIDWORKS Simulation 2022

Submodeling

Automated detection of stress singuylarities

Stress averaging at mid-side nodes

Terminology issues in the Finite Element Analysis	
22: Miscellaneous topics – part 2	489
Symmetry	
Antisymmerty	
Displacement and stress singularities	
Shell elements	
2D problems	
23: Implementation of FEA into the design process	539
Verification and Validation of FEA results	
FEA driven design process	
FEA project management	
FEA project checkpoints	
FEA reports	
24: Glossary of terms	559
25: Resources available to FEA users	567
26: List of exercises	571