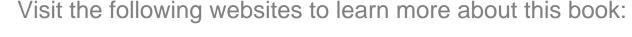

Thermal Analysis


with SOLIDWORKS Simulation 2022 and Flow Simulation 2022

Paul M. Kurowski

Table of contents

About the Author	i
Acknowledgements	i
Table of contents	iii
Before You Start Notes on hands-on exercises and functionality of Simulation	1
Prerequisites Selected terminology	
1: Introduction	5
Heat transfer by conduction	
Heat transfer by convection	
Heat transfer by radiation	
Thermal boundary conditions	
Analogies between thermal and structural analysis	
Thermal elements: solids and shells	
Scalar and vector entities, presenting results	
Steady state thermal analysis	
Transient thermal analysis	
Linear thermal analysis	
Nonlinear thermal analysis	
2: Hollow plate	21
Heat transfer by conduction	
Heat transfer by convection	
Different ways of presenting results of thermal analysis	
Convergence analysis in thermal problems	
Solid elements in heat transfer problems	
Shell elements in heat transfer problems	
3: L bracket	33
Heat transfer by conduction	
Use of 2D models	
Singularities in thermal problems	

4: Thermal analysis of a round bar	39
Heat transfer by conduction	
Thermal conductivity	
Heat transfer by convection	
Convection boundary conditions	
Thermal resistance	
Prescribed temperature boundary conditions	
Heat power	
Heat flux	
5: Floor heating duct – part 1	57
Heat transfer by conduction	
Prescribed temperature boundary conditions	
Heat power	
Heat flux	
Heat flux singularities	
Analogies between structural and thermal analysis	
6: Floor heating duct – part 2	75
Heat transfer by convection	
Free and forced convection	
Convection coefficient	
Ambient (bulk) temperature	
7: Hot plate	85
Transient thermal analysis	
Conductive heat transfer	
Convective heat transfer	
Heat power	
Thermostat	
Thermal inertia	
8: Thermal stress analysis of a coffee mug	95
Transient thermal analysis	
Thermal stress analysis	
Thermal symmetry boundary conditions	
Structural symmetry boundary conditions	
Use of soft springs	

9: Thermal buckling analysis of a link	107
Buckling caused by thermal effects	
Interpretation of Buckling Load Factor	
10: Thermal analysis of a heat sink using FEA	117
Analysis of an assembly	
Thermal contact conditions	
Steady state thermal analysis	
Transient thermal analysis	
Thermal resistance layer	
Thermal symmetry boundary conditions	
11: Radiative power of black body	133
Heat transfer by radiation	
Emissivity	
Black body	
Radiating heat out to space	
Transient thermal analysis	
Heat power	
Heat energy	
12: Radiation of a hemisphere	145
Heat transfer by radiation	
Emissivity	
Radiating heat out to space	
View factors	
Heat power	
13: Radiation between two bodies	153
Heat transfer by radiation	
Emissivity	
Radiating heat out to space	
View factors	
Heat power	
Closed system	
Open system	

14: Heat transfer with internal fluid flow	167
Introduction to Flow Simulation	
Using Flow Simulation for finding convection coefficients in internal fluid flow	
Interfacing between Flow Simulation and Thermal analysis	
Interfacing between Flow Simulation and structural analysis	
15: Heat transfer with external fluid flow	211
Using Flow Simulation for finding convection coefficients in external fluid flow	
Interfacing between Flow Simulation and Thermal analysis	
16: Thermal Analysis of a heat sink using CFD	229
Conjugate Heat Transfer with External Flow	
Thermal Resistance	
Ideal Wall	
17: Radiative Heat Transfer	229
Radiative heat transfer problem analyzed with Thermal Study in Simulation	
Radiative heat transfer problem analyzed with Flow Simulation	
18: NAFEMS Benchmarks	259
Importance of benchmarks	
One dimensional heat transfer with radiation	
One dimensional transient heat transfer	
Two dimensional heat transfer with convection	
19: Glossary of terms	277
20: References	279
21: List of exercises	281