
Introduction to **Finite Element Analysis Using SOLIDWORKS[®] Simulation 2024**

Randy H. Shih CSWP-Simulation

Better Textbooks. Lower Prices. www.SDCpublications.com

Visit the following websites to learn more about this book:

Googlebooks

Table of Contents

Preface		
Acknowledgments		

i ii

Introduction

Introduction	Intro-2
Development of Finite Element Analysis	Intro-2
FEA Modeling Considerations	Intro-3
Types of Finite Elements	Intro-4
Finite Element Analysis Procedure	Intro-6
Matrix Definitions	Intro-6
Getting Started with SOLIDWORKS	Intro-9
Starting SOLIDWORKS	Intro-9
SOLIDWORKS Screen Layout	Intro-12
• Menu Bar	Intro-12
Menu Bar Pull-down Menus	Intro-13
Heads-up View Toolbar	Intro-13
• Features Toolbar	Intro-13
• Sketch Toolbar	Intro-13
Feature Manager Design Tree	Intro-14
Graphics Area	Intro-15
Reference Triad	Intro-15
• Origin	Intro-15
Confirmation Corner	Intro-15
Graphics Cursor or Crosshairs	Intro-15
Message and Status Bar	Intro-15
Using the SOLIDWORKS Command Manager	Intro-16
Mouse Buttons	Intro-17
[Esc] – Canceling Commands	Intro-17
SOLIDWORKS Help System	Intro-18
Leaving SOLIDWORKS	Intro-18
Create a CAD Files Folder	Intro-19

Chapter 1 The Direct Stiffness Method

Introduction 1-	-2
One-dimensional Truss Element 1-	-3
Example 1.1 1-	-5
Example 1.2 1-	-7
Basic Solid Modeling Using SOLIDWORKS 1-	-10
The Adjuster Design 1-	-10

Starting SOLIDWORKS	1-10
Step 1: Create a Rough Sketch	1-12
Graphics Cursors	1-12
Geometric Relation Symbols	1-14
Step 2: Apply/Modify Relations and Dimensions	1-15
Viewing Functions – Zoom and Pan	1-17
Delete an Existing Geometry of the Sketch	1-18
Modify the Dimensions of the Sketch	1-19
Step 3: Complete the Base Solid Feature	1-20
Isometric View	1-21
Rotation of the 3D Model – Rotate View	1-21
Rotation and Panning – Arrow Keys	1-23
Dynamic Viewing – Quick Keys	1-24
3D Rotation	1-26
Viewing Tools – Heads-up View Toolbar	1-26
View Orientation	1-27
Display Style	1-28
Orthographic vs. Perspective	1-28
Customize the Heads-up View Toolbar	1-28
Step 4-1: Adding an Extruded Boss Feature	1-29
Step 4-2: Adding an Extruded Cut Feature	1-33
Step 4-3: Adding another Cut Feature	1-35
Save the Model	1-37
Questions	1-38
Exercises	1-39

Chapter 2 Truss Elements in Two-Dimensional Spaces

Introduction	2-2
Truss Elements in Two-Dimensional Spaces	2-2
Coordinate Transformation	2-5
Example 2.1	2-9
Solution	2-10
Global Stiffness Matrix	2-10
Example 2.2	2-13
Solution	2-13
Questions	2-19
Exercises	2-20

Chapter 3 2D Trusses in MS Excel and Truss Solver

Direct Stiffness Matrix Method using Excel	3-2
Example 3.1	3-2

iv

Establish the Global K Matrix for each Member	3-3
Assembly of the Overall Global Stiffness Matrix	3-8
Solving the Global Displacements	3-10
Calculating Reaction Forces	3-16
Determining the Stresses in Elements	3-18
The Truss Solver and the Truss View Programs	3-23
The Truss View Program	3-30
Questions	3-32
Exercises	3-33

Chapter 4 Truss Elements in SOLIDWORKS Simulation

4-2
4-4
4-5
4-6
4-15
4-16
4-17
4-19
4-20
4-23
4-25
4-26
4-28
4-29
4-30

Chapter 5 SOLIDWORKS Simulation Two-Dimensional Truss Analysis

Finite Element Analysis Procedure	5-2
Preliminary Analysis	5-3
Starting SOLIDWORKS	5-4
Units Setup	5-5
Creating the CAD Model – Structural Member Approach	5-6
Creating Structural Members in SOLIDWORKS	5-8
Weldment Profiles	5-9
Activate the SOLIDWORKS Simulation Module	5-12
Setting Up Truss Elements	5-14
Assign the Element Material Property	5-15
Applying Boundary Conditions - Constraints	5-16
Applying External Loads	5-21
Create the FEA Mesh and Run the Solver	5-23

Viewing the Stress results	5-24
Viewing the Internal Loads of All members	5-26
Viewing the Reaction Forces at the supports	5-27
Questions	5-28
Exercises	5-29

Chapter 6 Three-Dimensional Truss Analysis

Three-Dimensional Coordinate Transformation Matrix Stiffness Matrix Degrees of Freedom Problem Statement Preliminary Analysis Start SOLIDWORKS Units Setup Create the CAD Model – Structural Member Approach Create a New Weldment Profile in SOLIDWORKS Create Structural Members using the New Profile Editing the Dimensions of the New Profile Activate the SOLIDWORKS Simulation Module Setting Up the Truss Elements Assign the Element Material Property Applying Boundary Conditions - Constraints Applying the External Load Create the FEA Mesh and Run the Solver	$\begin{array}{c} 6-2 \\ 6-3 \\ 6-3 \\ 6-5 \\ 6-5 \\ 6-7 \\ 6-8 \\ 6-9 \\ 6-12 \\ 6-17 \\ 6-19 \\ 6-20 \\ 6-22 \\ 6-23 \\ 6-24 \\ 6-25 \\ 6-27 \\ 6-28 \end{array}$

Chapter 7 Basic Beam Analysis

Introduction	7-2
Modeling Considerations	7-2
Problem Statement	7-3
Preliminary Analysis	7-3
Start SOLIDWORKS	7-6
Units Setup	7-7
Create the CAD Model – Structural Member Approach	7-8
Create a Rectangular Weldment Profile	7-10
Create Structural Members Using the New Profile	7-14
Adjust the Orientation of the Profile	7-15

vi

vii

Add a Datum Point for the Concentrated Load	7-16
Activate the SOLIDWORKS Simulation Module	7-18
Assign the Element Material Property	7-20
Apply Boundary Conditions - Constraints	7-21
Apply the Concentrated Point Load	7-24
Apply the Distributed Load	7-26
Create the FEA Mesh and Run the Solver	7-28
What Went Wrong?	7-29
Directions 1 and 2 in Shear and Moment Diagrams	7-32
Questions	7-34
Exercises	7-35

Chapter 8 Beam Analysis Tools

Introduction	8-2
Problem Statement	8-2
Preliminary Analysis	8-3
Stress Components	8-4
Start SOLIDWORKS	8-6
Create the CAD Model – Structural Member Approach	8-7
Create a Rectangular Weldment Profile	8-9
Create Structural Members Using the New Profile	8-13
Adjust the Orientation of the Profile	8-14
Add a Datum Point for the 1.5m Location	8-15
Activate the SOLIDWORKS Simulation Module	8-17
Assign the Element Material Property	8-19
Apply Boundary Conditions - Constraints	8-20
Apply the Distributed Load	8-23
Create the FEA Mesh and Run the Solver	8-25
Shear and Moment Diagrams	8-26
Using the Probe Option to Examine Stress at Point1	8-28
Questions	8-29
Exercises	8-30

Chapter 9 Statically Indeterminate Structures

Introduction	9-2
Problem Statement	9-3
Preliminary Analysis	9-3
Start SOLIDWORKS	9-6
Create the CAD Model	9-7
Create a Circular Weldment Profile	9-9

Create Structural Members using the New Profile	9-13
Add a Datum Point for the Concentrated Load	9-14
Activate the SOLIDWORKS Simulation Module	9-16
Assign the Element Material Property	9-18
Apply Boundary Conditions - Constraints	9-19
Apply the Concentrated Point Load	9-22
Create the FEA Mesh and Run the Solver	9-24
Viewing the Internal Loads of All members	9-25
Shear and Moment Diagrams	9-26
Questions	9-28
Exercises	9-29

Chapter 10 Two-Dimensional Surface Analysis

Introduction	10-2
Problem Statement	10-3
Preliminary Analysis	10-3
Maximum Normal Stress	10-3
Maximum Displacement	10-4
Geometric Considerations of Finite Elements	10-5
Start SOLIDWORKS	10-6
Create the CAD Model	10-7
Activate the SOLIDWORKS Simulation Module	10-10
Assign the Element Material Property	10-13
Apply Boundary Conditions - Constraints	10-14
Apply the External Load	10-17
H-Element versus P-Element	10-18
Create the first FEA Mesh –Coarse Mesh	10-19
Run the Solver	10-21
Refinement of the FEA Mesh- Global Element Size 0.10	10-23
Refinement of the FEA Mesh- Global Element Size 0.05	10-25
Refinement of the FEA Mesh- Global Element Size 0.03	10-27
Refinement of the FEA Mesh- Global Element Size 0.02	10-28
Comparison of Results	10-29
Questions	10-30
Exercises	10-31

Chapter 11 Three-Dimensional Solid Elements

Introduction	11-2
Problem Statement	11-3
Preliminary Analysis	11-4

Start SOLIDWORKS	11-7
Create a CAD Model in SOLIDWORKS	11-8
Define the Sweep Path	11-8
Define the Sweep Section	11-10
Create the Swept Feature	11-12
 Create a Cut Feature 	11-13
Activate the SOLIDWORKS Simulation Module	11-15
Assign the Element Material Property	11-17
Apply Boundary Conditions – Constraints	11-18
Apply the External Load to the system	11-19
Create the first FEA Mesh – Coarse Mesh	11-20
Run the Solver	11-22
Refinement of the FEA Mesh – Global Element Size 0.10	11-24
Refinement of the FEA Mesh – Mesh Control Option	11-26
Refinement of the FEA Mesh – Automatic Transition	11-29
Comparison of Results	11-31
Questions	11-32
Exercises	11-33

Chapter 12 2D Axisymmetric and 3D Thin Shell Analyses

Introduction	12-2
Problem Statement	12-4
Preliminary Analysis	12-4
Start SOLIDWORKS	12-6
Create a 3D Solid Model in SOLIDWORKS	12-7
Activate the SOLIDWORKS Simulation Module	12-9
Assign the Element Material Property	12-12
Apply Boundary Conditions – Constraints	12-13
Apply the Pressure to the System	12-14
Create the first FEA Mesh – Coarse Mesh	12-15
Run the Solver and View the Results	12-16
Refinement of the FEA Mesh – Global Element Size 5.0	12-17
Start a New 3D Surface Model	12-18
Start a New FEA Study	12-21
Completing the Definition of the Surface Model	12-22
Assign the Element Material Property	12-23
Apply Boundary Conditions – Constraints	12-24
Apply the Pressure to the System	12-28
Create the first FEA Mesh – Coarse Mesh	12-29
Run the Solver and View the Results	12-30
Refinement of the FEA Mesh- Global Element Size 10.0	12-31
Create a 3D Solid Model in SOLIDWORKS	12-32
Activate the SOLIDWORKS Simulation Module	12-34

Assign the Element Material Property	12-36
Apply Boundary Conditions – Constraints	12-37
Apply the Pressure to the System	12-39
Create the first FEA Mesh – Coarse Mesh	12-40
Run the Solver and View the Results	12-41
Refinement of the FEA Mesh – Global Element Size 12.5	12-42
Notes on FEA Linear Static Analyses	12-43
Questions	12-44
Exercises	12-45

Chapter 13 FEA Static Contact Analysis

Introduction	13-2
Problem Statement	13-3
Parts	13-4
(1) Pliers-Jaw	13-4
(2) Pin	13-6
(3) Fork	13-6
Start SOLIDWORKS	13-8
Document Properties	13-8
Insert the First Component	13-9
Insert the Second Component	13-10
Assembly Mates	13-11
Insert the Third Component	13-14
Insert the Upper Jaw Component	13-16
Identifying Coincident Surfaces in the Model	13-19
Activate the SOLIDWORKS Simulation Module	13-20
Assign the Element Material Property	13-22
Apply Boundary Conditions – Constraints	13-23
Apply the External Load on the Handles	13-24
Global Contact Settings	13-25
Set up Specific Local Surfaces Interaction	13-26
Set up another Surface Interaction set on the PIN part	13-28
SOLIDWORKS Curvature-Based Mesh vs Standard Mesh	13-30
Create the FEA Mesh	13-31
Run the Solver and View the Results	13-32
Use the Animate Option	13-34
Refinement of the FEA Mesh – Apply Mesh Control Use	13-35
the Section Clipping Option	13-37
Use the Iso Clipping Option	13-38
Set up a Contact Pressure Plot	13-39
Questions	13-42
Exercises	13-43

Chapter 14 Dynamic Modal Analysis

Introduction	14-2
Problem Statement	14-3
Preliminary Analysis	14-3
The Cantilever Beam Modal Analysis Program	14-6
Start SOLIDWORKS	14-9
Create the CAD Model	14-10
Activate the SOLIDWORKS Simulation Module	14-12
Assign the Element Material Property	14-14
Apply Boundary Conditions - Constraints	14-15
Create the first FEA Mesh	14-16
Viewing the Results	14-18
Refinement of the FEA Mesh – Global Element Size 0.15	14-21
Add an Additional Mass to the System	14-23
One-Dimensional Beam Frequency Analysis	14-27
Conclusions	14-28
Questions	14-29
Exercises	14-30

Appendix

Index