
Engineering Analysis with SOLIDWORKS Simulation 2025

Text and Video Instruction

Paul M. Kurowski

Visit the following websites to learn more about this book:

Googlebooks

Table of contents

Finding reaction forces

Presenting FEA results in a desired format

About the Author	i
Table of contents	ii
Before You Start	1
Notes on hands-on exercises and functionality of SOLIDWORKS Simulation	
Prerequisites	
Selected terminology	
Graphics	
1: Introduction	5
What is Finite Element Analysis?	
Finite Element Analysis used by Design Engineers	
Objectives of FEA for Design Engineers	
What is SOLIDWORKS Simulation?	
Fundamental steps in an FEA project	
Errors in FEA	
A closer look at finite elements	
What is calculated in FEA?	
How to interpret FEA results	
Units of measure	
Using online help	
Limitations of Static studies	
2: Static analysis of a plate	31
Using the SOLIDWORKS Simulation interface	
Linear static analysis with solid elements	
Controlling discretization error with the convergence process	

3: Static analysi	s of an L-bracket	79
Stress singu	larities	
Differences	between modeling errors and discretization errors	
Using mesh	controls	
Analysis in	different SOLIDWORKS configurations	
Nodal stress	ses, element stresses	
4: Static and fre	quency analyses of a pipe support	99
Use of shell	elements	
Frequency a	analysis	
Bearing loa	d	
5: Static analysi	s of a link	127
Symmetry b	boundary conditions	
Preventing	rigid body motions	
Limitations	of the small displacements theory	
6: Frequency an	alysis of a tuning fork and a plastic part	137
Frequency a	analysis with and without supports	
Rigid body	modes	
The role of	supports in frequency analysis	
Symmetric	and anti-symmetric modes	
7: Thermal anal	ysis of a pipe connector and a heater	147
Analogies b	etween structural and thermal analysis	
Steady state	thermal analysis	
Analysis of	temperature distribution and heat flux	
Thermal bo	undary conditions	
Thermal str	esses	
Vector plots	5	
8: Thermal anal	ysis of a heat sink	167
Analysis of	an assembly	
•	local Contact conditions	
Steady state	thermal analysis	
Transient th	ermal analysis	
Thermal res	istance layer	
Use of secti	on views in result plots	

9: Static analysis of a hanger	
Global and local Contact conditions	
Hierarchy of Contact conditions	
10: Thermal stress analysis of a bi-metal loop	193
Thermal deformation and thermal stress analysis	
Saving model in deformed shape	
11: Buckling analysis of an I-beam	201
Buckling analysis	
Buckling load safety factor	
Stress safety factor	
12: Static analysis of a bracket using adaptive solution methods	209
h-adaptive solution method	
p-adaptive solution method	
Comparison between h-elements and p-elements	
13: Drop test	227
Drop test analysis	
Stress wave propagation	
Vibration caused by impact	
Direct time integration solution	
14: Selected nonlinear problems	243
Large displacement analysis	
Analysis with shell elements	
Membrane effects	
Following and non-following load	
Nonlinear material analysis	
Residual stress	
15: Mixed meshing problems	287
Using solid and shell elements in the same mesh	
Mesh compatibility	
Manual and automatic finding of contact sets Shell Manager	

16: Analysis of weldments using beam and truss elements	297
Different levels of idealization implemented in finite elements	
Preparation of a SOLIDWORKS model for analysis with beam elements	
Beam elements and truss elements	
Analysis of results using beam elements	
Limitations of analysis with beam elements	
17: Review of 2D problems	325
Classification of finite elements	
2D axisymmetric element	
2D plane stress element	
2D plane strain element	
18: Vibration analysis - modal time history and harmonic	353
Modal Time History analysis (Time Response)	
Harmonic analysis (Frequency Response)	
Modal Superposition Method	
Damping	
19: Analysis of random vibration	381
Random vibration	
Power Spectral Density	
RMS results	
PSD results	
Modal excitation	
20: Topology Optimization	401
Definition of Topology Optimization	
Design space	
Goals and constraints	
Topology Optimization criteria	
Examples of Topology Optimization	

21: Miscellaneous topics – part 1

Mesh quality
Solvers and solvers options
Displaying mesh in result plots
Automatic reports
E drawings
Non uniform loads
Frequency analysis with pre-stress
Interference fit analysis
Rigid connector
Pin connector
Bolt connector
Remote load/mass
Weld connector
Bearing connector
Cyclic symmetry
Strongly nonlinear problem
Submodeling
Automated detection of stress singularities
Stress averaging at mid-side nodes
Terminology issues in the Finite Element Analysis

22: Miscellaneous topics – part 2

Symmetry
Antisymmetry
Displacement and stress singularities
Shell elements
2D problems

23: Implementation of FEA into the design process	5411
Verification and Validation of FEA results	
FEA driven design process	
FEA project management	
FEA project checkpoints	
FEA reports	
24: Glossary of terms	5611
25: Resources available to FEA users	56969
26: List of exercises	5733

421

493